HYDROLOGY & HYDRAULICS REPORT

Quinte Conservation Authority And The Township of South and Central Frontenac

FHIMP ON22-46

For the

Napanee River Upper Lakes

Flood Hazard Mapping

June 10, 2024

1-71 Millennium Parkway Belleville, ON, K8N 4Z5

Phone: (613) 969-1111 Fax: (613) 969-8988

Table of Contents

1	In	Introduction1			
2	B	Background2			
3	St	Study Area3			
4	Н	ydro	ology4		
	4.1		Data Sources4		
	4.	.1.1	LiDAR, Catchment Areas & Terrain4		
	4.	.1.2	Soils and Land Cover4		
	4.	.1.3	Meteorologic Inputs6		
	4.	.1.4	Water Survey of Canada Stream Flows8		
	4.2		Flood Frequency Analysis10		
	4.3		Rainfall-Runoff Modeling12		
	4.	.3.1	Calibration14		
	4.	.3.2	Validation19		
	4.	.3.3	Loss Method21		
	4.	.3.4	Lag Time21		
	4.	.3.5	Channel Routing		
	4.	.3.6	Reservoir Routing22		
	4.	.3.7	Hydrologic Input Summary31		
	4.	.3.8	Peak Flow Summary		
	4.4		Snowmelt + Rainfall Model32		
	4.5		Index Flood Analysis		
	4.6		Climate Change		
	4.7		Presentation of Peak Flows		
	4.8		Combined HEC-HMS & HEC-RAS Models		
5	Н	ydra	aulics		
	5.1		Model Set-Up45		
	5.	.1.1	Field Survey45		
	5.	.1.2	Computational Mesh46		
	5.	.1.3	Boundary Conditions		
	5.	.1.4	Storage Areas		
	5.	.1.5	Model Run Scenarios52		
	5.2		Napanee River Upper Lakes Model Discretization53		
	5.	.2.1	Reach #1: St. Andrews Lake to Cole Lake53		

	5.2.2	Reach #2: Cole Lake to Howes Lake	57
	5.2.3	Reach #3: Van Luven Lake to Howes Lake	59
	5.2.4	Reach #4: Howes Lake to Verona Lake	61
	5.2.5	Reach #5: Hambly Lake to Verona Outlet Channel	63
	5.2.6	Reach #6: White Lake to 13 Island Lake	63
	5.2.7	Reach #7: Potspoon Lake to 30 Island Lake	64
	5.2.8	Reach #8: 30 Island Lake to 13 Island Lake	68
	5.2.9	Reach #9: 13 Island Lake to Howes Lake	70
	5.2.10	Reach #10: Fourteen Island Lake to Verona Lake	72
	5.2.11	Reach #11: Verona Lake Outlet Channel to Hardwood Dam	73
5	.3 Cu	Ilvert & Bridge Crossings	75
6	Water L	evel Summary	78
6	.1 Na	apanee River Upper Lakes Water Level Summary	78
6	.2 Co	omparison to 1981 Regulatory Water Levels	78
6	.3 Su	ib-Lakes and Wetlands Water Level Summary	78
7	Sensitiv	ity Analysis	83
8	Public Ir	nformation Center	83
9	Referen	ces	87
Арр	endix A-:	1: Quinte Conservation – Napanee River Upper Lakes FHIMP Study Area	88
Арр	endix B-2	2: Sub-Catchment Areas and Descriptions	89
Арр	endix B:	Soil and Land Cover Maps	90
Арр	endix C-1	L: Hartington Snowmelt + Rainfall MSC Frequency Values	91
Арр	endix C-2	2: Sinusoidal Hourly Snowmelt + Rainfall Runoff for 1%, 3-Day AEP	92
•••		Historical Maximum Snow Water Content and Cumulative Runoff from Hartington Climate Data wmelt Routine	& 93
Арр	endix E:	Federal Climate Data Portal: ΔT Adjustment	94
Арр	endix F:	Kingston Environment Canada IDFs	95
Арр	endix G:	CFA Output – Three Parameter Log Normal	96
Арр	endix H:	Lake Outlet Locations	99
Арр	endix I:	Culvert & Bridge Stage-Flow Hydrographs1	00
Арр	endix J:	Culvert & Bridge Data Sheets1	01
Арр	endix K:	Computational Mesh Spacing for 2D Flow Areas1	02

Table of Tables

TABLE 4-1: NAPANEE RIVER UPPER LAKES OVERALL WATERSHED HYDROLOGIC SOILS GROUP SUMMARY Summary	5
TABLE 4-2: NAPANEE RIVER UPPER LAKES OVERALL WATERSHED LAND COVER SUMMARY	5
TABLE 4-3: RUNOFF VOLUMES FOR 12- AND 24-HR STORM DURATIONS FOR KINGSTON IDF CURVES	3
TABLE 4-4: LIST OF LOCAL STREAM FLOW GAUGES FOR EXTENDED DATA RECORD)
TABLE 4-5: HEC-SSP SETTINGS AND DESCRIPTIONS	L
TABLE 4-6: SUMMARY OF MAXIMUM PEAK FLOWS FROM HEC-SSP GENERAL FREQUENCY ANALYSIS	2
TABLE 4-7: MEASURED VS. MODELED PEAK FLOWS FOR RAINFALL-RUNOFF STORM EVENTS 19)
TABLE 4-8: SUMMARY OF HYDROLOGY INPUTS FOR HEC-HMS MODEL	L
TABLE 4-9: PEAK FLOW SUMMARY FOR HEC-HMS RAINFALL-RUNOFF MODEL, M ³ /S 32	2
TABLE 4-10: COMPARISON OF OBSERVED VS. MODELED PEAK FLOWS FOR THE 2014 FLOOD EVENT	3
TABLE 4-11: PEAK FLOW SUMMARY FOR SNOWMELT PLUS RAINFALL AEP EVENTS (3-DAY DURATION), CMS	1
TABLE 4-12: TABLE OF CONSTANT (C) AND EXPONENT (N) FOR USE IN THE MODIFIED INDEX FLOOD EQUATION (MINISTRY OF NATURAL RESOURCES AND FORESTRY, 2020)	5
TABLE 4-13: RATIO OF VARIOUS FLOOD FREQUENCIES TO Q2 (MINISTRY OF NATURAL RESOURCES AND FORESTRY, 2020)	5
TABLE 4-14: LIMITATION OF APPLICATION OF INDEX FLOOD METHOD BASED ON DRAINAGE AREA (MINISTRY OF NATURAL RESOURCES AND FORESTRY, 2020)	
TABLE 4-15: FUTURE ESTIMATED RAINFALL INTENSITIES FOR 1%, 24-HR AEP	3
TABLE 4-16: TEMPERATURE AND PRECIPITATION IMPACTS ON MAXIMUM SWC PER THE SCHROETER SNOWMELT MODEL 40	
TABLE 4-17: PEAK FLOW SUMMARY FOR NAPANEE RIVER UPPER LAKES 41	
TABLE 4-18: SUMMARY OF PEAK FLOWS FROM ALTERNATIVE METHODS FOR NAPANEE RIVER UPPER LAKES (M3/S)42	2
TABLE 4-19: HEC-RAS MODELS WITH CORRESPONDING REACH, ROUTE LENGTHS, PRIMARY LAKE(S), WETLAND(S) AND SUB-LAKE(S)	1
TABLE 5-1: TAILWATER ELEVATIONS FOR NAPANEE RIVER UPPER LAKES STUDY AREA	
TABLE 5-2: SUMMARY OF CROSSINGS #1-12	5
TABLE 5-3: SUMMARY OF CROSSINGS #13-2677	7
TABLE 6-1: WATER LEVEL SUMMARY FOR 10% AEP, 1% AEP, 0.5% AEP, AND CLIMATE CHANGE SCENARIOS)
TABLE 6-2: WATER LEVEL SUMMARY FOR 2% AEP, 5% AEP, AND 50% AEP SCENARIOS)
TABLE 6-3: COMPARISON OF 1% AEP LAKE LEVELS WITH AND WITHOUT BEAVER DAMS 81	L
TABLE 6-4: COMPARISON OF MAXIMUM LAKE FLOOD DEPTHS (M) BETWEEN 1981 AND 2024 OUTPUT RESULTS81	L
TABLE 6-5: SUB-LAKES AND WETLANDS 1% AEP WATER LEVEL SUMMARY	2
TABLE 8-1: MANNING'S N VALUES APPLIED IN HYDRAULIC MODEL SENSITIVITY TESTS	1

Table of Figures

FIGURE 4-1: EXCERPT FROM 1997 MTO DMM DESCRIBING HYDROLOGIC SOILS GROUP CLASSIFICATIONS	5
FIGURE 4-2: RAINFALL DATA APPLIED IN MAY 2017 CALIBRATION EVENT FOR RAINFALL-RUNOFF MODEL	7
FIGURE 4-3: RAINFALL DATA APPLIED IN NOVEMBER 2006 VALIDATION EVENT FOR RAINFALL-RUNOFF MODEL	7
FIGURE 4-4: NAPANEE RIVER AT CAMDEN EAST WATER SURVEY OF CANADA STREAM FLOW GAUGE LOCATIONS	9
FIGURE 4-5: EXCERPT FROM MTO ONLINE DRAINAGE MANUAL	11
FIGURE 4-6: HEC-HMS MODEL SCHEMATIC FOR INITIAL CALIBRATION	13
FIGURE 4-7: "EXTERNAL" CATCHMENTS APPLIED IN CALIBRATION MODEL	17
FIGURE 4-8: OBSERVED HYDROGRAPH FOR MAY 2017 CALIBRATION EVENT	18
FIGURE 4-9: OBSERVED HYDROGRAPH FOR NOVEMBER 2006 VALIDATION EVENT	20
Figure 4-10: Cole Lake Storage-Discharge Relationship	22
FIGURE 4-11: POTSPOON LAKE STORAGE-DISCHARGE RELATIONSHIP	23
Figure 4-12: St Andrew Lakes Storage-Discharge Relationship	24
FIGURE 4-13: VAN LUVEN LAKE STORAGE-DISCHARGE RELATIONSHIP	25
FIGURE 4-14: VARTY LAKE STORAGE-DISCHARGE RELATIONSHIP	25
FIGURE 4-15: WHITE LAKE STORAGE-DISCHARGE RELATIONSHIP	26
FIGURE 4-16: 13 ISLAND LAKE STORAGE-DISCHARGE RELATIONSHIP (WINTER)	27
FIGURE 4-18: 13 ISLAND LAKE STORAGE-DISCHARGE RELATIONSHIP (SUMMER)	28
FIGURE 4-19: FOURTEEN ISLAND + SIGWORTH LAKE STORAGE-DISCHARGE RELATIONSHIP	29
FIGURE 4-20: THIRTY ISLAND LAKE STORAGE-DISCHARGE RELATIONSHIP	30
FIGURE 4-21: INDEX FLOOD REGIONS (MINISTRY OF NATURAL RESOURCES AND FORESTRY, 2020)	35
FIGURE 4-22: EXCERPT FROM TECHNICAL MEMO WITH EQUATION FOR FUTURE ESTIMATED RAINFALL INTENSITIES	
(Environment and Climate Change Canada)	39
FIGURE 4-23: PROJECTED TEMPERATURE INCREASES AT HARTINGTON ECCC STATION DUE TO CLIMATE CHANGE	40
FIGURE 4-24: SCHEMATIC OF INTERACTIVE HEC-HMS & HEC-RAS MODELS	43
FIGURE 5-1: CAMERON SWAMP CONSTRICTION POINT AND OUTLET CHANNEL IN HEC-RAS TO OBTAIN OUTLET RATING CURVE	G 47
Figure 5-2: Rating Curve at Cameron Swamp Outlet with Comparison to Observed Water Levels near Hardwood Dam	49
FIGURE 5-3: REACH AND INFLOW BOUNDARY CONDITION LOCATION SUMMARY	51
FIGURE 5-4: REACH#1 - ST. ANDREWS LAKE TO COLE LAKE	
FIGURE 5-5: ST. ANDREWS LAKE LANE STAGE AND FLOW HYDROGRAPH; 1% AEP RAINFALL PLUS SNOWMELT	55
FIGURE 5-6: K&P TRAIL OUTLET STAGE AND FLOW HYDROGRAPHS; 1% AEP RAINFALL PLUS SNOWMELT	56
Figure 5-7: Reach #2 – Cole Lake to Howes Lake	58
Figure 5-8: Reach #3 Plus Van Luven Lake	59
FIGURE 5-9: REACH #3 - VAN LUVEN LAKE OUTLET (CROSSING #10) STAGE AND FLOW HYDROGRAPH	
Figure 5-10: Reach #4 – Howes Lake to Verona Lake	

FIGURE 5-11: STAGE AND FLOW HYDROGRAPH FOR REACH #4 OUTLET AT DESERT LAKE ROAD FOR 1% AEP S	Snowmelt
Plus Rain Event	62
FIGURE 5-12: REACH #5 AND HAMBLY LAKE	63
FIGURE 5-13: REACH #6 - WHITE LAKE TO 13 ISLAND LAKE	65
Figure 5-14: Reach #7	66
FIGURE 5-15: STAGE AND FLOW HYDROGRAPH FOR SPERLING ROAD NEAR POTSPOON LAKE OUTLET; 1% AEI + RAIN EVENT	
Figure 5-16: Reach #8	69
Figure 5-17: Reach #9	70
FIGURE 5-18: HINCHINBROOKE ROAD NORTH STAGE AND FLOW HYDROGRAPH CONTROL OF BASS LAKE; 1%	AEP
RAINFALL PLUS SNOWMELT EVENT	71
FIGURE 5-19: REACH #10; DEPTH OVERLAY	72
Figure 5-20: Reach #11	73
FIGURE 5-21: HIGHWAY 38 STAGE AND FLOW HYDROGRAPH; 1% AEP RAINFALL PLUS SNOWMELT EVENT	74
FIGURE 8-1: SENSITIVITY OF PEAK RUNOFF RATES TO CN	
FIGURE 8-2: SENSITIVITY OF PEAK RUNOFF RATES TO LAG TIME	
FIGURE 8-3: SENSITIVITY OF PEAK RUNOFF RATES TO RAINFALL VOLUME	85

1 Introduction

Quinte Conservation Authority (QC) has partnered with the Townships of South and Central Frontenac (the Townships) along with federal and provincial partners to lead the Napanee River Upper Lakes Flood Hazard Mapping.

With acquired funding through the federal Flood Hazard Identification Mapping Program (FHIMP), QC has undertaken a leadership role in the production of updated mapping for the Napanee River Upper Lakes. The objective is to provide a floodplain mapping update that will allow QC and the Township staff to make informed planning and regulation decisions. Jewell Engineering Inc. (Jewell) is pleased to support this initiative through the technical analysis and reporting described herein.

The driving forces for this project include climate change, improved modelling techniques and software programs, improved data acquisition tools, land use changes, and updated infrastructure that can dramatically influence flood behaviour and floodplain extents.

The need for accurate, detailed floodplain mapping that factors in climate change forecasting has become increasingly evident as flood damages become the largest cost to the Canadian economy out of any other natural hazard. Updated floodplain maps are needed to protect human life, property, and infrastructure from the damaging effects of flooding that is occurring with increased frequency.

The funds deployed by the federal and local governments to complete this updated floodplain mapping provide a dual benefit; it protects the local community from potential flood hazards *and* reduces the dependence on provincial and federal funds associated with the Disaster Financial Assistance Arrangements (DFAA) administered by Public Safety Canada.

This report is intended to describe the hydrologic and hydraulic analysis that was completed to produce the 2024 floodplain mapping set.

2 Background

The following background documents were reviewed in preparation of this Hydrology & Hydraulics Report.

The **1981 Napanee Salmon Upstream Lakes Watershed Study** prepared by Crysler & Lathem Limited was issued to establish fill line mapping for several lakes of interest in the upper reaches of the Salmon and Napanee watersheds. The 1981 study offers insight into previous hydrologic modeling and mapping methods. It includes hydrologic calculations for rainfall and snowmelt conditions, with outlet descriptions for particular lakes of interest, including those controlled by the Hardwood Dam. Additional controls, such as the storage-discharge for the Cameron Swamp and old Thirteen Island Lake Dam were also included. The hydrologic model in the 1981 study used TR20 software that is no longer of standard use among practioners. The 1981 report served a useful purpose to the conservation authority and the 2024 floodplain mapping includes additional lakes within the Napanee River Upper Lakes system as well as updated outlet surveys, crossing surveys, and the application of current modeling software and technical guidance.

The **1978 Napanee River Basin Study** prepared by Crysler & Lathem Limited includes a "structural, economic, and environmental analysis of each dam and its headpond." The report notes that the Cameron Swamp is a wetland that has significant impacts on the flows in the Napanee River (this was further confirmed with information in the 1981 study as well as the current hydrology review at the Camden East flow gauge). A fill line was included for the Cameron Swamp with the intent to ensure its environmental features and natural flood hazard controls receive maximum protection.

The **13** Island Lake Dam Hazard Potential Classification and Structural Design Report was prepared by Jewell Engineering in September of 2022. This document was reviewed since the information describes the changes in the old dam at 13 Island Lake to the new dam. It describes that the old dam was constructed in 1975 to control summer lake levels for recreational purposes. The old dam was comprised of four (4) 1200mm steel culverts that were adapted to permit installation of four 8" high logs. Due to a loss of road granular materials and observations of failure of the steel culverts, three (3) 1.8m x 0.9m concrete box culverts were selected as the replacement structure after going through the public process. The normal operating water level behind the dam is 150.43m with 2 - 0.15m (6") logs in place.

The *Dam Safety Review Report for the Colebrook Dam* was prepared by Hatch Ltd. in February of 2022. While outside of the subject study area for the Napanee River Upper Lakes floodplain mapping, the Dam Safety Review was investigated to determine the potential impacts it has on the local flow gauge at the Napanee River at Camden East station. The 1% AEP inflows and outflows for the Colebrook Dam are unchanged based on Table 3-1 of the Hatch report, indicating the Colebrook Dam would provide no appreciable flow attenuation in a regulatory level flood event. Therefore, flow attenuation impacts on the Camden East gauge are expected to be driven by the Cameron Swamp, Hardwood Dam, and several other outlet controls within the watershed that contributes to the Camden East gauge.

3 Study Area

The study area for the Napanee River Upper Lakes was outlined by QC at the beginning of the project and is reproduced in Appendix A-1.

The study area focuses on the major lakes within the watershed; this includes Potspoon Lake, White Lake, St. Andrew Lakes, Cole Lake, Thirty Island Lake, Thirteen Island Lake, Fourteen Island Lake, Little John Lake, Sigsworth Lake, Hambly Lake, Van Luven Lake, Howes Lake, and Verona Lake.

The study area also includes four (4) river branches that connect the Napanee River Upper Lakes to their confluence at Verona Lake. Runoff from the four river branches and thirteen (13) lakes are subject to flow controls from the Hardwood Dam immediately downstream of County Road 38 in Verona for low flow conditions, and the Cameron Swamp for moderate and high flow conditions.

The northwest branch includes the tributary that connects St. Andrew Lakes and Cole Lake before draining as Cole Creek through Godfrey towards Howes Lake and Verona Lake.

The north branch includes White Lake that outlets to White Creek. White Creek crosses north of Glendower before meeting the northeast branch at Thirteen Island Lake.

The northeast branch includes Potspoon Lake that drains in series to Thirty Island Lake and then Thirteen Island Lake. The north/northeast branches outlet from Thirteen Island Lake into Howes Lake, where it meets the runoff from the northwest branches of Cole Creek.

The east branch has relatively short channel sections as it includes Little John Lake, Sigworth Lake, and Fourteen Island Lake, each of which are in close proximity to one another. The outlet of Fourteen Island Lake drains through two smaller lakes (Little Mud Lake and Spring Lake) before meeting the confluence with the other three main branches of the Napanee River Upper Lakes at Verona Lake.

The study area is evidently dominated by the thirteen lakes identified above. Each lake has an outlet control, whether man-made or natural, which encourages these lakes to act as a system of reservoirs and connector channels. The study area focuses on the water levels and flood hazard limits produced by the regulatory peak flows that contribute to these lake reservoirs and river channels.

4 Hydrology

The hydrology assessment was prepared for the lake outlets and several nodes of interest throughout study area. Various methodologies were applied and compared to determine representative peak flows. Each methodology was carefully considered prior to the selection of the peak flows for use in the hydraulic model, including potential increases in flows due to spring-melt conditions.

The Napanee River Upper Lakes watershed is within *Zone 2* of *Flood Hazard Criteria Zones for Ontario Conservation Authorities*. Therefore, the flood standard is the 1% annual exceedance probability (AEP).

The detailed hydrologic analysis for the purpose of quantifying the peak flow rates is described below.

4.1 Data Sources

Data collection is an integral component of the hydrologic assessment. A description of each primary data source applied in the analysis is provided below.

4.1.1 LiDAR, Catchment Areas & Terrain

The subject watershed for the Upper Lakes has a total area of 148.5km².

The watershed is discretized into sixteen (16) sub-catchments based on confluence points, lake outlets, and dam locations. The catchment boundaries are identified in Appendix A-2.

External catchments beyond the subject watershed were included for calibration purposes to allow the hydrologic model results to be compared to flow gauge observations of the Napanee River at the Camden East station (see further discussion in Section 4.3).

Catchment areas were delineated using topographic information from the following sources.

- Provincial LiDAR developed and published by Land Information Ontario was reviewed in combination with ESRI server data information to assist in delineation of the sub-catchment boundaries. The sub-catchment configurations are similar to those delineated in the 1981 Crysler and Lathem study, however Jewell's assessment is more localized (i.e. more subcatchments) and with updated LiDAR data. The 2023 catchment delineations included a detailed review of the contour information with GIS software extents set as dense as 0.5m contours in select locations areas to ensure the accuracy of the sub-catchment boundaries.
- 2) A site-specific topographic survey for lake outlets and hydraulic structures was completed to assist in the stage-storage-discharge relationship supplied to the hydrologic and hydraulic models.

4.1.2 Soils and Land Cover

A soils map is provided in Appendix B. Soils information was obtained from the Soil Survey Complex database produced by the *Ontario Ministry of Agriculture, Food and Rural Affairs* in cooperation with the *Ontario Ministry of Natural Resources and Forestry*.

The HSG classification for soils is used to identify drainage characteristics for various soil types. An excerpt from Chapter 8 of the *1997 MTO Drainage Management Manual* that describes drainage characteristics for each HSG is provided below.

The soils in the Napanee River Upper Lakes watershed are predominantly Hydrologic Soils Groups (HSG) B, as shown in Appendix B and Table 4-1.

HSG Soils Group	Area (km²)	Land coverage (%)
А	1.2	1
В	117.1	79
С	24.3	16
D	5.9	4

 Table 4-1: Napanee River Upper Lakes Overall Watershed Hydrologic Soils Group Summary

The hydrologic soil group is used to classify soils into groups of various runoff potential.

The Soil Conservation Service (SCS) classifies bare thoroughly wet soils into four hydrologic soil groups (A, B, C and D). SCS descriptions of the four groups, modified slightly to suit Ontario conditions, are as follows: (Design Chart 1.09)

- A: High infiltration and transmission rates when thoroughly wet, eg. deep, well drained to excessively-drained sands and gravels. These soils have a low runoff potential.
- B: Moderate infiltration and transmission rates when thoroughly wet, such as moderately deep to deep open textured loam.
- C: Slow infiltration and transmission rates when thoroughly wet, eg. fine to moderately finetextured soils such as silty clay loam.
- D: Very slow infiltration and transmission rates when thoroughly wet, eg. clay loams with a high swelling potential. These soils have the highest runoff potential.

In Ontario, soils have been found to lie between the main groups given above, and have therefore been interpolated as AB, BC, CD as appropriate, such as Guelph loam, which is classified as BC.

The soils data is used to develop curve numbers (CNs) that are a key modelling parameter used in the Soil Conservation Service (now known as the *National Resources Conservation Service*) methodology for estimating the proportion of precipitation that will runoff the lands and the portion that will infiltrate. CNs are a function of soil type, land cover, slope, and land use. The higher the CN – the greater the proportion of precipitation that is expected to runoff the lands. CNs are representative of the pervious portion of the watershed. Jewell followed the guidance in *MTO Design Chart 1.09* to determine curve numbers for the discretized catchments.

Land cover information was obtained from the Ontario Land Cover Compilation (OLCC), a database owned by *Land Information Ontario*, and provided by the *Ontario Ministry of Natural Resources and*

Forestry. A review of land coverage for the watershed shows that the land use is predominantly woods, water, and cultivated land. A summary of land coverage percentage is provided in Table 4-2 below.

Land Cover	Area (km²)	Land Coverage (%)
Woods	84.13	57
Cultivated	22.77	15
Urban	1.69	1
Water	30.90	21
Bedrock	9.04	6

Table 4-2: Napanee River Upper Lakes Overall Watershed Land Cover Summary

4.1.3 Meteorologic Inputs

Environment and Climate Change Canada (ECCC) intensity-duration frequency (IDF) curves for data collected at the Kingston station is the best available data record (see Appendix F). Jewell reviewed the rainfall data at Kingston, Tweed, Smith Falls, and Hartington. The Tweed and Smith Falls records do not have a sufficient duration with only 21 years of data. The Hartington station has a sufficient length of data record at 45 years, however it does not have published IDF curves. The Hartington station *does* have snowmelt plus rainfall frequency values which were applied in the AEP snowmelt events (see Appendix C-1). It is also noted that the rainfall frequency values for the Hartington station have a published 1% AEP, 1-day rainfall total of 92.1mm.

The Kingston station is the closest station that has a set of IDF curves *and* a sufficient length (63 years) of record. The Kingston station has a 1% AEP, 1-day rainfall total of 97.1mm. This is greater than the 24-hr total from the Hartington station that is closer to Verona, suggesting the Kingston IDFs offer a conservative estimate of rainfall depths for the subject region.

Additionally, Quinte Conservation (QC) provided precipitation records for use in the rainfall-runoff model calibration and validation process. QC provided records at the 2nd Depot, Camden, and Tamworth rainfall gauges. Since the precipitation at these gauges is not verified by ECCC and does not have standardized sensor selection, calibration, and placement under the control of ECCC, the *distribution* of the rainfall gauges was the primary interest from the received rain gauge data set. The rainfall totals from the QC records were compared to the total depth observed at the Environment Canada Hartington station.

ECCC provided stream flow gauge data with shorter (5-minute) time intervals than the publicly available daily records for the Napanee River at Camden East station (02HM007). The discharge values are part of the Water Survey of Canada's primary products and considered a reliable data source.

Major rainfall events occurred locally in May of 2017 and November of 2006. These rainfall events were used to calibrate and validate the rainfall-runoff model. The rainfall record for each of these events is shown in Figures 4-2 and 4-3. These events are discussed further in Section 4.3.

An important consideration in the precipitation data is the potential impacts on rainfall depths due to climate change. QC, in partnership with FHIMP representatives, provided the recommended approach to quantify increased rainfall depths due to climate change. This approach is completed by scaling rainfall intensities based on projected temperature increases. The methodology, rainfall depths, and impacts on peak flows are discussed further in Section 4.6.

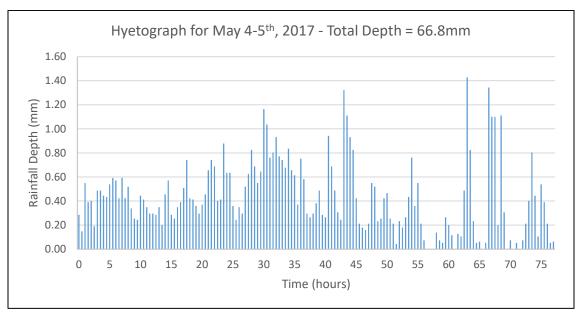
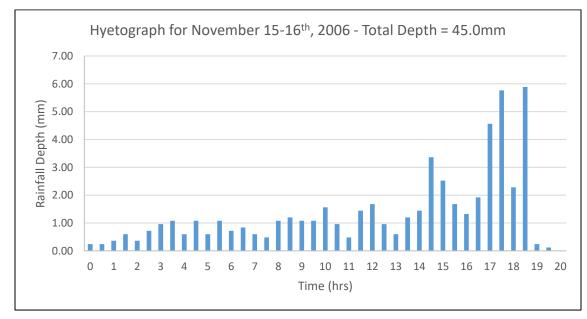



Figure 4-3: Rainfall Data Applied in November 2006 Validation Event for Rainfall-Runoff Model

Jewell participated in recent discussions with ECCC staff regarding precipitation statistics. As part of these discussions, Jewell acquired and reviewed the ECCC precipitation statistics tool. This review confirmed Jewell's in-house spreadsheet is consistent with the ECCC methodology. Jewell's in-house precipitation tool was used to determine the 0.5% AEP statistical rainfall since this AEP is not included in the standard Environment Canada IDF curves. The spreadsheet calculates the precipitation frequency curve using a Gumbel distribution.

The recommended AEP storms for floodplain mapping are derived from the SCS distribution based on the 2002 *MNR Technical Guide for Ontario Flood Hazard Limits* with varying durations. In an assessment of the critical AEP storm, Jewell compared peak outflows from a HEC-HMS model (see Section 4.3) for the 12 and 24-hr duration events. Any event less than 12 hours is not recommended for the Napanee River Upper Lakes since shorter duration events do not produce significant enough rainfall volumes to govern as the regulatory storm event. This is particularly pertinent to the subject watershed as the storage in the reservoirs, and subsequently the peak outflows from the lakes, will be governed by high runoff volumes that occupy storage within the lakes and create a driving head on the outflow controls that drain to the receiving channels.

In the rainfall simulations, the 24-hr duration produced the largest peak runoff rate. Therefore, the 24-hr duration was considered the critical storm for the rainfall-runoff model. A comparison of statistical rainfall volumes for the 12-hr and 24-hr durations is provided in Table 4-3.

AEP	Rainfall Volume (mm)			
ALP	12-Hr	24-Hr		
50	41.2	47.1		
10	63.8	69.3		
1	92.0	97.1		
0.5	99.7	105.3		

Table 4-3: Runoff Volumes for 12- and 24-Hr Storm Durations for Kingston IDF Curves

4.1.4 Water Survey of Canada Stream Flows

There is a stream flow gauge located along Napanee River at *Water Survey of Canada (WSOC)* Station 02HM007 titled 'Napanee River at Camden East'.

The flow data of interest is the *Annual Maximum Instantaneous Peak Discharge*. The record length for the gauge is from 1974 to 2022, with 46 years of annual instantaneous maximum peaks.

Discharge data was received from ECCC in 5-minute intervals for use in the calibration and validation model runs. The Depot Creek at Bellrock (02HM002) WSOC flow gauge was also applied in the calibration/validation process. Table 4-4 and Figure 4-4 summarize the station data and gauge locations.

Name	Station ID	Length of Record	Gross Drainage Area (km²)
Depot Creek at Bellrock	02HM002	1957 - 2023	203
Napanee River at Camden East	02HM007	1974 - 2022	718
Napanee River at Hardwood Dam	N/A	N/A	149

Table 4-4: List of Local Stream Flow Gauges for Extended Data Record

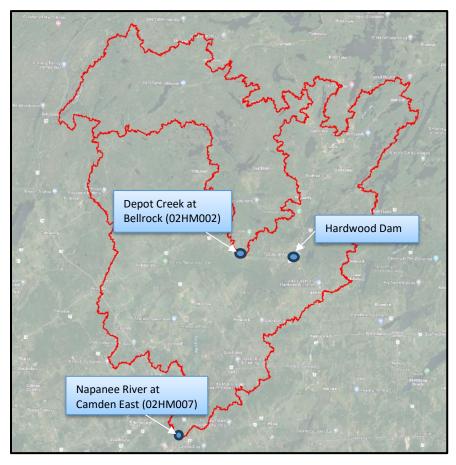


Figure 4-4: Napanee River at Camden East Water Survey of Canada Stream Flow Gauge Locations

4.2 Flood Frequency Analysis

A primary benefit of updated hydrologic models is that they can be calibrated to observed stream flow gauge data that has occurred since the previous hydrologists completed their assessment of the peak flows. While models are a simplification of the complex hydrologic system, the flow gauge provides the true answers. Fortunately, the WSOC follows strict procedures to ensure the flow observations are accurate and suitable for use in statistical analysis programs. The previous study of the Upper Napanee Lakes occurred in 1981. The *Napanee River at Camden East* WSOC flow gauge has records from 1974 to present. Therefore, 40+ years of "new" flow data has been incorporated into this floodplain mapping update.

The flood frequency analysis (FFA) was completed using the Canada Frequency Analysis program. This modeling approach employs stream flow gauge records into the hydrology results similar to the HEC-SSP (Statistical Software Package) software. The statistical software program was applied to calculate the AEP flows using a Three Parameter Log Normal distribution as recommended in previous discussions with ECCC. In Ontario, the Three Parameter Log Normal distribution can be applied with the maximum annual instantaneous peak data as the preferred data set.

For the purposes of obtaining AEP flood flows, the General Frequency Analysis (GFA) component can be employed and is a recommended method in the 2002 MNR guidelines. Parameters other than peak flows, such as stage or precipitation data, can also be calculated using a GFA.

In performing a GFA, data is provided to the program and the calculated results are output in graphical and tabular formats. Prior to providing input data, a variety of settings are defined by the user. Some notable settings and their descriptions are shown in Table 4-5.

From an assessment of the stream flow records, it is evident that the majority of the annual instantaneous peaks occur in the spring. For the 46-yr data record of annual instantaneous peaks at the WSOC Camden East flow gauge, only three (3) years had instantaneous peaks outside of December 30th to May 1st. This suggests a 93% probability that a future flood event would be the result of a snow-melt event, or a combination of a snow-melt and rainfall event. Therefore, the stream flow gauge records provide the best indication of the anticipated flow rates produced at the Camden East station in a snow-melt plus rain scenario.

The CFA program results for the respective AEPs are summarized in Table 4-6. For AEP flows at the downstream limit of the Napanee River Upper Lakes study area, a transposition of flows is required (see Figure 4-5). The transposed flows are useful for comparison purposes, but due to the large difference in areas subject to the transposition equation, further investigation is recommended. This further investigation is described in the following subsections (Sections 4.3 and 4.4). A transposition of flows to the Cameron Swamp outlet was also completed since the Cameron Swamp is the downstream limit of the hydrologic model used in the calibration simulations.

Transposition and interpolation of data from a stream gauge can be done based on the Modified Index Flood method as follows:

 $Q2 = Q1 [A2 / A1]^{0.75}$

Where Q1 = known peak discharge

Q2 = unknown peak discharge

- A1 = known basin area
- A2 = known basin area of unknown peak discharge
- Figure 4-5: Excerpt from MTO Online Drainage Manual

Table 4-5: HEC-SSP Settings and Descriptions

Setting	Description			
Log Transform	 This setting can be selected to have the frequency analysis performed on the logs of the data Log Transform needs to be used to allow for the LogNormal and LogPeason III distributions to be selected If the Log Transform setting is not used, the Normal and Pearson III distributions can be selected 			
Confidence Limits	 Confidence limits measure the uncertainty of the computed value for a selected exceedance probability Default settings calculate the 90% confidence interval, with confidence limits of 0.05 and 0.95 			
Distribution	 This setting provides the analytical distribution options used to perform the frequency analysis Distribution choices are None, Normal, LogNormal, Pearson III, and LogPearson III 			
Generalized Skew	 Computes a skew value for the data Three options that can be selected are Station Skew, Weighted Skew, and Regional Skew The default option is Station Skew, where the skew of the computed curve is based solely on computing a skew from the provided data points 			

	Peak Flow (m ³ /s)			
AEP (%)	Camden East (718 km²)	Hardwood Dam (149 km²)	Cameron Swamp (670 km ²)	
50	43.2	13.2	41.0	
10	61.5	18.9	58.4	
1	80.7	24.7	76.6	
0.5	86.0	26.4	81.7	

Table 4-6: Summary of Maximum Peak Flows from HEC-SSP General Frequency Analysis

4.3 Rainfall-Runoff Modeling

The SCS Curve Number (CN) method is commonly applied in hydrology models for precipitation-driven runoff modeling applications. It relies on the soils and land use data to establish the loss method with calculation of a CN. The modeling approach is supported by Visual OTTHYMO (VO) and HEC-HMS.

All modelling programs are simplifications of reality and are limited in their capabilities. While VO and HMS are both well-established and recommended software programs, they are limited by input parameters and the uncertainty associated in the data sets and calculations used to produce these inputs. Both modelling programs are acceptable for simulating peak flows to be used in the hydraulic model. The most recent software publications have been used for this project.

While VO was initially selected, HEC-HMS was ultimately preferred due to its use of timestamps in the model runs. The timestamp feature is useful in calibrating the hydrologic model since it allows the user to compare timing of the hydrograph peaks. The objective is to ensure the hydrograph peaks, start time, and lag times are similar in both the observed results and modeled results. Shape files for land cover and soil type prepared in GIS software were applied to develop the attribute tables used to calculate the weighted CN value for each sub-catchment. This replicates the GIS features available in Visual OTTHYMO. The shape files are included in the final deliverables package.

Notable input parameters for the HMS model include:

- Precipitation intensity, duration and frequency as well as distribution.
- > Catchment area.
- Percent imperviousness runoff volume, time to peak and peak flow increase with percent imperviousness.
- Soil conditions these determine how much and how quickly water will be removed from runoff through infiltration. This may be expressed as a curve number, or by a runoff coefficient or using an infiltration model such as Horton's Infiltration.
- Slope peak flows increase with slope.
- Initial abstraction depth of precipitation input that is subtracted from the model and does not contribute to runoff.
- Manning's n frictional coefficient that affects the time to peak.
- Basin lag or time to peak.

The peak flows simulated in HMS for each storm event at each lake outlet and major road crossing are summarized in Subsection 4.3.8 that follows.

It is noted that the urbanization in the subject watershed is predominantly limited to cottages and the community of Verona. Future development is not expected to yield an appreciable impact to the hydrologic findings described herein.

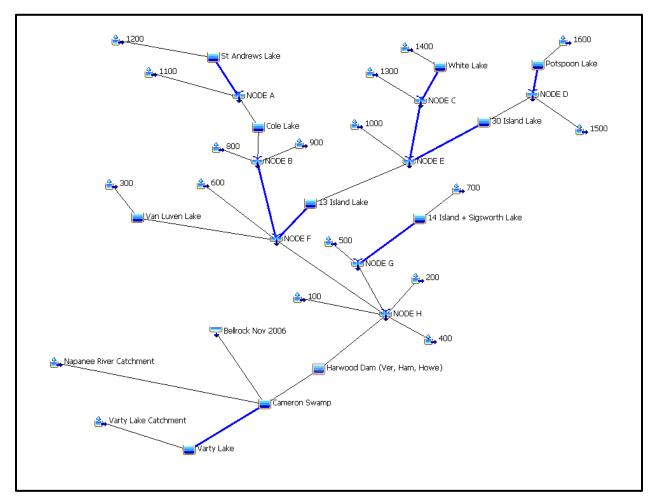


Figure 4-6: HEC-HMS Model Schematic for Initial Calibration

A consideration in the hydrology model is the starting water levels at or above the invert of each individual lake outlet. In the absence of a sufficient record of stage data for each lake, the best available data set is the stream flow record, which has 43 of its 46 annual instantaneous peaks occurring in the snowmelt period. The annual instantaneous peaks in the GFA include all data that contribute to the flows, including baseflows and flows that occurred prior to the main snowmelt event.

An alternative measure that was included in the HEC-HMS model is the near-zero initial abstraction value (0.1mm) that was applied in both the snowmelt and rainfall-runoff models. Whereas initial abstraction can range from approximately 2 – 15mm based on the default parameters in HMS, setting this value to 0.1mm essentially omits the initial precipitation removal and encourages immediate runoff

that simulates early depths of water above the invert prior to the peak that occurs later in the runoff event. While the ideal condition would be to have a long record of stage data for each lake, the above approach provides confidence that the amount of water level rise above the invert would error on the side of caution.

4.3.1 Calibration

The rainfall model was calibrated using the event that occurred in May of 2017. This event was selected as the calibration storm since it produced the largest annual instantaneous peak outside of the spring melt season. It also produced the seventh (7th) highest annual instantaneous peak out of the 46-year data record. The other six (6) were produced from spring melt events that are discussed further in Section 4.4.

The measured precipitation data (see Figure 4-2) was supplied as a meteorologic input to the HMS model. The objective is to obtain an outflow hydrograph from the HMS model that produces similar peak flow and lag time values to the measured flow gauge hydrographs.

The measured flow gauge hydrograph is shown in Figure 4-8. On May 9^{th} of 2017, the stream flow gauge recorded its maximum peak flow of 58.9 m³/s.

It is important to note that in the spring of 2017, runoff was released from the snowpack by April 8th and majority of the runoff had subsided by April 30th based on a review of historic climate data and the local snowmelt model created by Dr. H. O. Schroeter (see further snowmelt discussion in Section 4.4). The May 2017 rainfall event began shortly after the spring melt season on the evening of May 4th. Therefore, antecedent moisture condition (AMC) III was selected for the model calibration to account for saturated ground conditions. The flow measurement preceding the rainstorm is considered baseflow for the purpose of the calibration, and is subtracted from the flow readings associated with the May 4-5th rainfall event; the baseflow is 24.4 m³/s. With the flow gauge peak of 58.9m³/s, subtracting the baseflow yields a *target peak flow* rate of 34.5 m³/s.

Per discussions with federal representatives on similar local FHIMP projects, the curve number (CN) is the primary input parameter subject to calibration. Lag time is also an important consideration, and the lag times of the calibrated model were adjusted to provide consistency with the *measured* lag times.

Ideally, a flow gauge would be present at the downstream limit of the study area near the Hardwood Dam. A unique component of the Napanee River Upper Lakes is that the study area terminates *prior* to, or upstream of, the available flow gauge location.

Given the flow gauge location downstream of the study area, an alternative calibration approach would be a regional frequency analysis. Since the lake outlet configurations for the Upper Napanee Lakes (several of which are man-made in the form of dams, weirs, or culvert crossings) are different than the controls (if any) located upstream of the stream flow gauges at adjacent watersheds, the regional approach was not selected. Rather, the local Upper Napanee River system and flow gauge results were applied in the calibration process (i.e. a single station approach).

In an effort to accommodate the "unknowns" between the Upper Lakes study area and the Camden East flow gauge, Jewell reviewed the watershed characteristics and flow controls for the downstream

catchment areas that contribute to the flow gauge location. These "external" catchments are listed below and shown in Figure 4-7.

- Catchment Ext-1 represents the 203 km² drainage area that contributes to the Depot Creek at Bellrock flow gauge located downstream of the Depot Lake outflow control structures. This runoff drains to the Cameron Swamp and ultimately to the flow gauge at Camden East. A benefit of the Bellrock flow gauge is that its data record provides known values into the calibration events for 28% (203/718) of the total catchment area that drains to the Camden East gauge. This increases the accuracy of the calibration for the Upper Napanee Lakes watershed by reducing uncertainties in the external catchments that contribute to the model calibration run. The flow records for the Bellrock gauge were input directly into the calibration model via an inflow hydrograph as a Source element in the HMS model.
- 2. Catchment Ext-2 represents the 283 km² drainage area outside of Catchments Ext-1 and Ext-3 that drains to the Cameron Swamp. The storage-discharge relationship for the Cameron Swamp was obtained from the Crysler & Lathem study and included in a reservoir-routing simulation. There is significant flow attenuation from the Cameron Swamp due to the large storage volume within its reservoir. The CN for this catchment was calculated with the same methodology applied to the Upper Lakes sub-catchments. The lag time for Catchment Ext-2 however was calculated using the *measured* lag time. Lag time is defined as the time separation from the centroid of the rainfall to the centroid of the outflow hydrograph. Therefore, it was back-calculated from the precipitation and stream flow gauge records for the subject rainstorm.
- 3. **Catchment Ext-3** represents the 23.1 km² drainage area that contributes to Varty Lake and outlets to the Cameron Swamp. The storage-discharge relationship for the Varty Lake outlet was obtained from the Crysler & Lathem study and included in the reservoir-routing of Varty Lake.
- 4. Catchment Ext-4 represents the drainage area between the outlet of the Cameron Swamp and the flow gauge at Camden East. This catchment is different than the others in that its control structures are not expected to provide any significant flow attenuation. The main control structure within Catchment Ext-4 is the Colebrook Dam. The inflows and outflows for large storm events at the Colebrook dam were presented in the 2022 Colebrook Dam Safety Study by Hatch Limited. The document showed that no appreciable flow attenuation is provided by the Colebrook Dam in a large flood event. Since Catchment Ext-4 represents a small (7%) portion of the catchment to the Camden East gauge and does not receive substantial flow attenuation, it was not included in the calibration model. Therefore, the downstream limit of the calibration model is up to and including the outlet from the Cameron Swamp.

The subject watershed for the total Upper Napanee Lakes is 148.5 km². The contributing area to the flow gauge at Camden East is 718 km². The objective of the "external" catchment review and calibration is to assess the suitability of standard hydrology inputs for the Upper Lakes sub-catchments. If the model produces lower or higher values than observed, then the input parameters can be adjusted accordingly. Since the external catchments are similar to the Upper Lakes watershed with significant lake/wetland coverage and significant outflow controls, adjustments made to the external catchments can reasonably be applied to the Upper Lakes sub-catchments. Although the Upper Lakes total watershed is only 21% of

the catchment area to the *Napanee River at Camden East* WSOC gauge, the known values at the Bellrock Creek flow gauge, combined with the storage-discharge relationships for Varty Lake and Cameron Swamp, allows for an accurate representation of the flows for the Upper Lakes system.

The HEC-HMS model compares well with the observed flow in the May 2017 calibration event (see Table 4-7). The *validation* component is described in the following subsection.

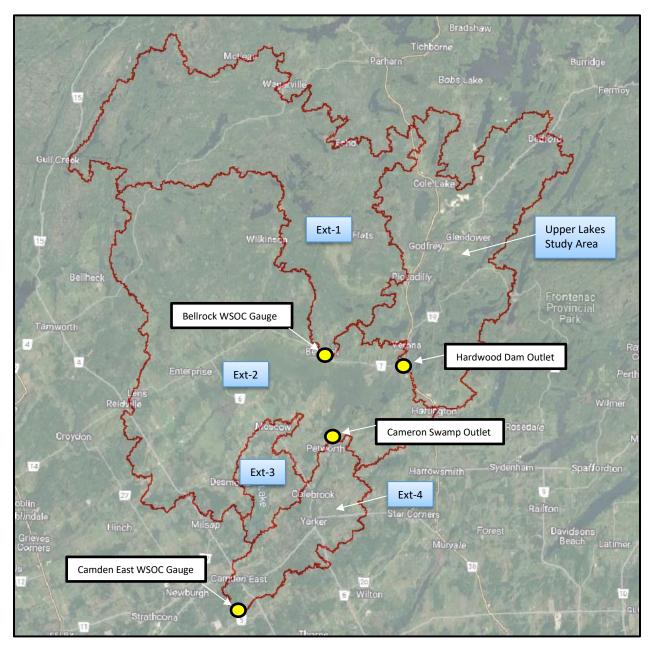


Figure 4-7: "External" Catchments Applied in Calibration Model

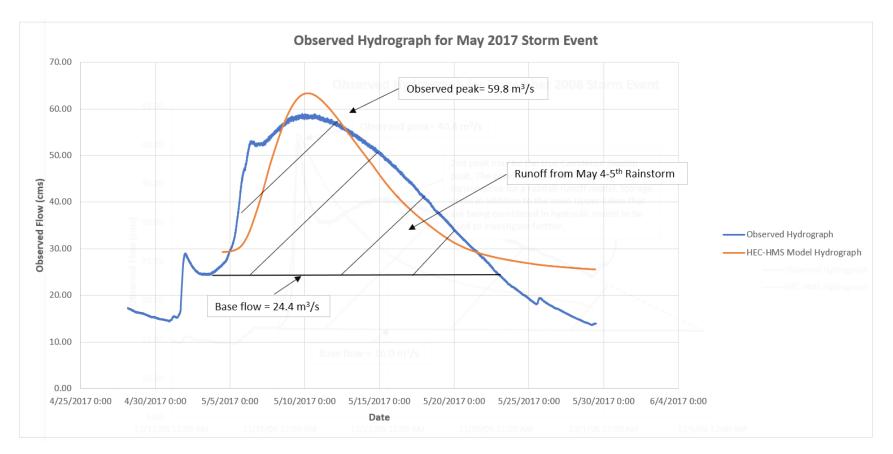
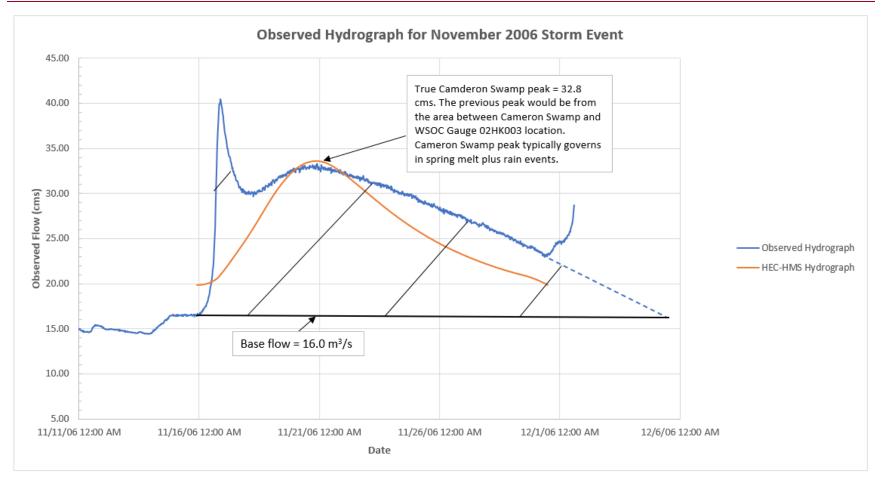


Figure 4-8: Observed Hydrograph for May 2017 Calibration Event

4.3.2 Validation

The precipitation event that primarily occurred on November 15th and 16th of 2006 was selected as the validation event since it is the next largest annual instantaneous peak flow outside of the May 2017 calibration storm. This approach is consistent with the 2002 MNR Technical Guide that recommends model testing be performed on the largest available storm events.


The flow gauge readings prior to the rain event are considered baseflow for the purpose of the calibration, and subtracted from the flow readings associated with the November $15-16^{th}$ rainfall event; the baseflow is $16.0 \text{ m}^3/\text{s}$. With the flow gauge peak of $40.4 \text{ m}^3/\text{s}$, subtracting the baseflow yields a target peak flow rate of $24.4 \text{ m}^3/\text{s}$.

The calibrated parameters were applied to the validation event; the only exception is a conversion of CN values from AMC III to AMC II since the validation event occurred in late fall and was not subject to the same saturated ground conditions as the calibration event that occurred in May of 2017. In the AMC II scenario, CNs were increased by 7% to better replicate the peak flows observed in the validation event.

A comparison of peak flow results between observed and modeled outputs for the calibration and validation storm events confirm the hydrologic model yields a realistic representation of the flows produced by a large rainfall-runoff event measured at the Cameron Swamp, and by extension, the Napanee River Upper Lakes study area. Therefore, the same rainfall-runoff model parameters, with AMC II + 7% CN values, were selected for the statistical AEP events.

	Calibration Storm		Validation Storm	
Moisture Condition:	AMC III		AMC II + 7%	
Rainfall Depth (mm):	66.7		45.0	
	Measured	HEC-HMS	Measured	HEC-HMS
Peak Flow (m ³ /s)	34.5	38.4	16.8	17.6
Hydrograph Volume (ha-m)	1,883	1,732	1,425	1,114
Time of Peak	5/9/2017 20:00	5/9/2017 15:45	11/20/2006 21:00	11/20/2006 22:00
Lag Time (hrs)	106	103	108	109

Table 4-7: Measured vs. Modeled Peak Flows for Rainfall-Runoff Storm Events

Figure 4-9: Observed Hydrograph for November 2006 Validation Event

4.3.3 Loss Method

The curve number (CN) loss method was selected since it accounts for both land cover and hydrologic soils group information. It was also selected because of the reputable sources available for this information. CNs were selected based on guidance from the CVC SWM guidelines in addition to MTO Design Charts. A look-up table was used to connect each land cover sub-area to its corresponding soil type. Attribute tables in GIS software applications were utilized to develop the detailed weighted CN applied to each sub-catchment.

AMC II, per Chapter 8 of the MTO Drainage Manual, was applied for antecedent moisture conditions (AMC) in the rainfall-runoff model. This represents 'average' soil conditions and AMC II values were increased by 7% based on the calibration/validation process. AMC II was used in the rainfall-driven AEP peak flow estimates as presented in Section 4.7. Saturated soil conditions (AMC III) were not selected for the rainfall-runoff event because this condition, combined with the statistical AEP rainfall events, would produce an event beyond the selected AEP frequency. Saturated conditions are applied separately in the snowmelt plus rain basin model that has been prepared to address spring melt conditions.

The individual basin inputs for the CN value were calculated with 28 combinations of HSG and land cover. For example, HSG A coverage could correspond with a woods, meadows, cultivated, lawns, impervious, or water land cover. The same process is repeated for HSGs B, C and D to develop the individual weightings for each sub-catchment. A brief description of each sub-area is provided in Appendix A-2.

4.3.4 Lag Time

Jewell applied the SCS Lag Time method to determine time of concentration and lag time values. This method was selected since it is derived from a study of watersheds that have drainage areas up to 24 km² with an upper limit of approximately 50 km². The sub-catchments within the Napanee River Upper Lakes are within this upper limit. The largest sub-catchment within the study area is 16 km². The SCS lag time method was also selected because it accounts for land cover and soil types by incorporating the CN value to estimate a retardance factor. The SCS lag time method is described in the *Hydrology National Engineering Handbook* published by the United States Department of Agriculture and the Natural Resources Conservation Service.

The individual lag time calculations were determined using the longest flow path and the mean overland slope specific to each sub-basin. The longest flow path was measured using LiDAR topography. The mean overland slope is higher than the channel slope as it includes direct runoff from the sub-basins before they reach the generally shallow sloping channels.

The lag times for the large external catchments in the calibration and verification models were adjusted based on observed precipitation and flow gauge recordings. The lag time is defined as the time differential between the centroid of the precipitation and the centroid of the runoff volume, which can be measured when these inputs are available.

4.3.5 Channel Routing

Channel routing was completed using the Muskingum-Cunge method for the initial model calibration. This method is applicable for reaches with relatively small slopes. The Napanee River Upper Lakes watershed has an average channel slope of 0.2%. This routing method allows the user to input a crosssection to represent the ground surface data for the channel and overbank areas. Cross-sections were obtained from the terrain data and then simplified into an eight-point cross-section.

The Muskingum-Cunge method was also selected since it incorporates Manning's n values to represent expected roughness for the channel and overbank areas. The applied Manning's n values are based on the design charts in the *MTO Drainage Manual*.

4.3.6 Reservoir Routing

Reservoir routing was included in the hydrologic model to account for the thirteen (13) lakes of interest. The storage-discharge relationship for each reservoir was established based on field survey, GIS applications, and a review of background documents. The field survey is used to identify the elevation and size of the outlet structures, the GIS applications are used to established the footprint area and volume of the reservoir, and the background documents identified the storage-discharge relationship for reservoirs beyond the subject study limits for their use in the calibration model.

The storage-discharge for Cole Lake is presented in Figure 4-10. The governing control is a beaver dam downstream of the natural Cole Lake outlet. The beaver dam is approximately 15m wide and is simulated using broad-crested weir flow.

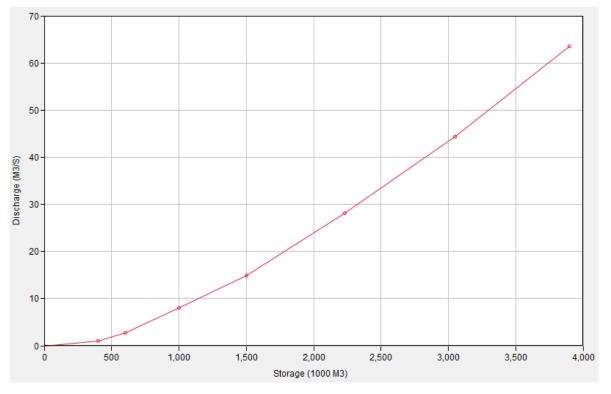


Figure 4-10: Cole Lake Storage-Discharge Relationship

The tailwater at the Hardwood Dam, imposed by the Cameron Swamp (see Section 5.1.3) controls the water levels in Verona, Howes, Van Luven and Hambly Lakes. The rating curves at the Cameron Swamp and Hardwood Dam outlets are provided in Figure 5-2 of the *Hydraulics* section of this report.

Potspoon Lake is controlled by a 6m weir and its storage-discharge relationship is shown below.

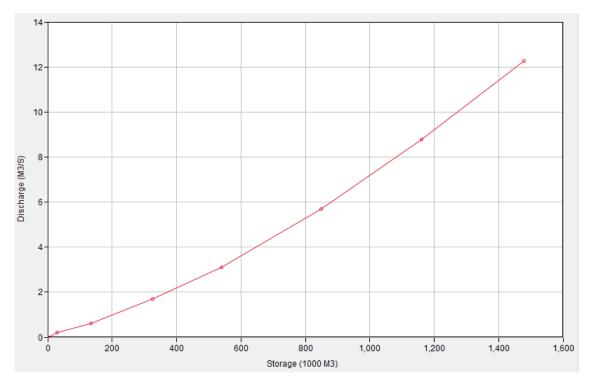


Figure 4-11: Potspoon Lake Storage-Discharge Relationship

The St. Andrew Lakes outflow is limited by the culvert crossing at St. Andrew Lakes Lane. Three (3) 750mm diameter pipes and a relatively flat roadway were analyzed to prepare the storage-discharge relationship presented in Figure 4-12.

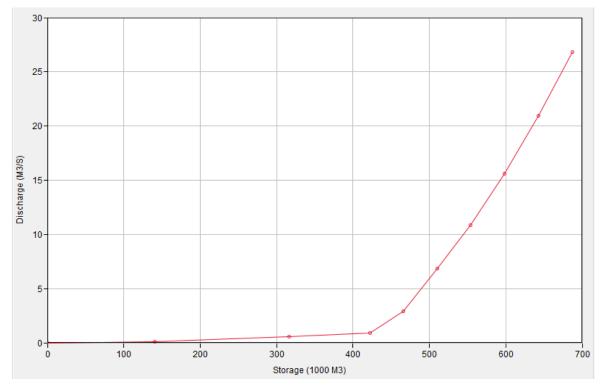


Figure 4-12: St Andrew Lakes Storage-Discharge Relationship

Van Luven Lake was assumed to be controlled by the Cameron Swamp & Hardwood Dam outlet in the 1981 study. However, a review of LiDAR data and 2023 field survey indicates that Van Luven Lake is controlled by the concrete box culvert crossing at County Road 38 before it drains into Howes Lake. The backwater impacts from the Cameron Swamp do influence the water levels in Van Luven Lake and subsequently the water levels for Van Luven and Howes Lake will be the same in large storm events. However, the headloss imposed by the box culvert could results in slightly higher water levels in Van Luven Lake in smaller, more routine rainfall events or in standard summer water level conditions. The box culvert and road profile were included in the hydraulic calculations to prepare the storage-discharge relationship in Figure 4-13.

Figure 4-13: Van Luven Lake Storage-Discharge Relationship

Figure 4-14 below illustrates the storage-discharge relationship for Varty Lake. This relationship was obtained from the appendices of 1981 Crysler & Lathem study for use in the calibration model.

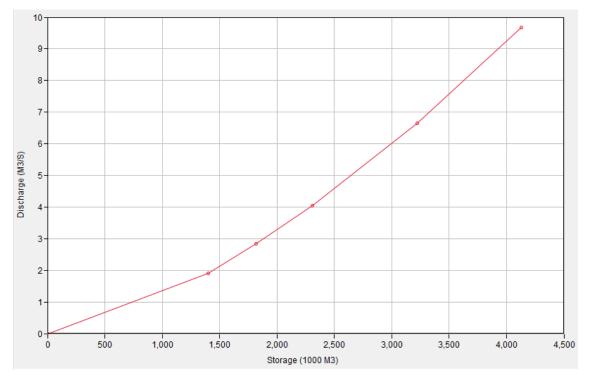


Figure 4-14: Varty Lake Storage-Discharge Relationship

The White Lake outlet was difficult to quantify in the field survey due to its remote location. A 4m length beaver dam is expected to be the current flow control based on satellite imagery and LiDAR and was simulated using broad-crested weir flow.

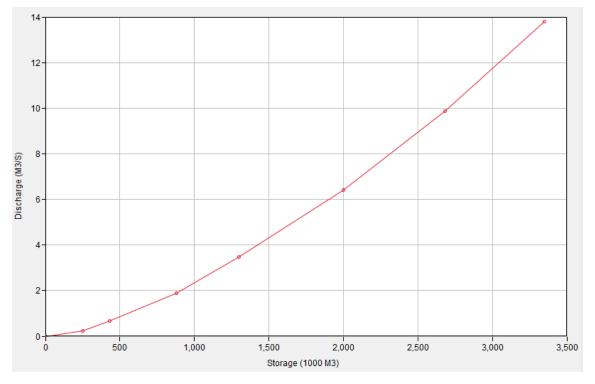


Figure 4-15: White Lake Storage-Discharge Relationship

Recent improvements to the Thirteen Island Lake Dam were completed as described in Section 2. The three (3) 1.8m x 0.9m concrete box culverts, stop logs at normal operating level, and road profile were used to establish the storage-discharge relationship shown below. For the winter setting, there are two logs in the west and middle log bays, and three logs in the east bay as directed by QC staff.

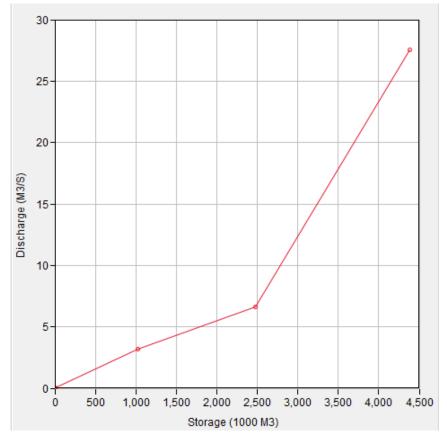


Figure 4-16: 13 Island Lake Storage-Discharge Relationship (Winter)

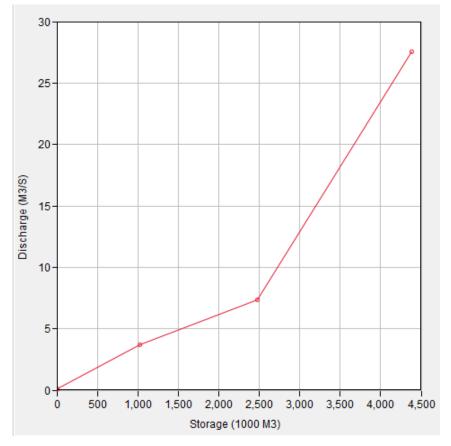


Figure 4-17: 13 Island Lake Storage-Discharge Relationship (Summer)

Fourteen Island Lake and Sigsworth Lake are controlled by the same outlet. The outlet includes a concrete two-stage weir with a 0.76m wide 1st stage and 9.2m wide 2nd stage. This weir yields the storage-discharge relationship shown below in Figure 4-18.

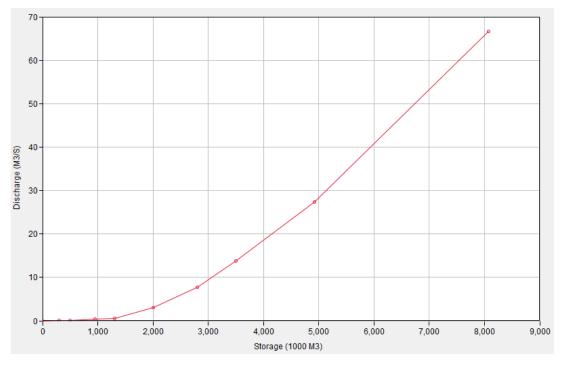


Figure 4-18: Fourteen Island + Sigworth Lake Storage-Discharge Relationship

Thirty Island Lake is controlled by a narrow open channel and a private crossing a short distance downstream. The entrance crossing includes two (2) 450mm diameter plastic pipes causing low outflows until overtopping of the driveway occurs. The result is very low outflows for majority of storm events as shown by the storage-discharge relationship presented in Figure 4-19.

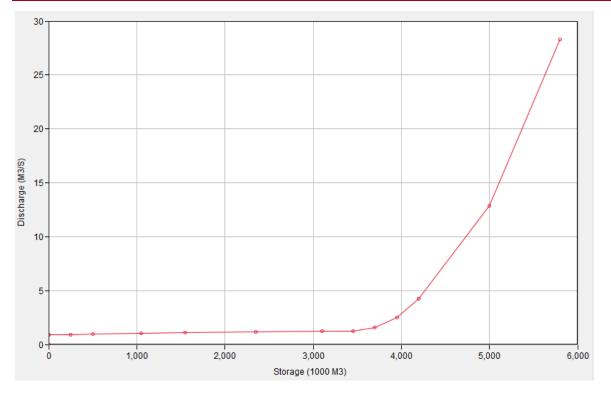


Figure 4-19: Thirty Island Lake Storage-Discharge Relationship

4.3.7 Hydrologic Input Summary

A hydrology input summary is provided below. This summarizes the area, curve number, and lag time (T_p) applied for each sub-catchment.

Catchment ID	Area (km²)	Mean Slope (%)	Watershed Length (km)	T _₽ (hr)	CN
100	2.56	5.5%	0.4	0.28	70.4
200	11.29	5.0%	4.9	2.05	74.3
300	10.07	4.8%	2.7	1.42	70.7
400	2.00	5.1%	2.3	1.25	69.1
500	6.86	6.5%	3.9	1.71	68.7
600	13.92	5.2%	4.7	2.07	71.2
700	16.39	5.7%	5.9	2.55	68.2
800	8.33	5.7%	1.2	0.48	72.8
900	3.64	5.4%	2.6	1.23	72.4
1,000	11.76	1.9%	2.3	1.97	70.8
1,100	14.63	1.3%	4.2	3.69	72.4
1,200	7.17	1.4%	3.4	2.93	73.7
1,300	7.65	3.4%	2.7	1.58	73.5
1,400	12.73	2.1%	2.2	1.91	67.1
1,500	14.63	4.5%	4.7	2.52	65.4
1,600	<u>4.91</u>	2.5%	2.2	1.74	67.9

 Table 4-8: Summary of Hydrology Inputs for HEC-HMS Model

4.3.8 Peak Flow Summary

A summary of annual exceedance probability peak flows for the rainfall-runoff scenario at each lake outlet and node of interest is shown in the table below. The rise in water levels associated with the 1% AEP regulatory event is presented in Section 4.7.

Outlet of			Return Period		
Basin No.	Location	10%	1%	*1% + CC	
1600	Potspoon Lake Outlet	0.5	1.0	1.4	
1500	30 Island Lake Outlet	0.9	1.0	1.0	
1400	White Lake Outlet	0.5	1.0	1.6	
1300	Westport Rd near Glendower	16.0	26.5	36.4	
1200	St Andrews Lakes Outlet	0.2	0.7	1.7	
1100	Cole Lake Outlet	0.8	3.1	5.2	
1000	13 Island Lake Outlet	4.1	6.9	8.9	
900	South Frontenac Rd at Godfrey	8.4	14.1	19.4	
800	Cole Creek at Godfrey	28.2	47.3	65.4	
700	14 Island Lake Outlet	0.1	0.3	0.4	
600	Howes Lake Outlet	7.3	12.5	20.8	
500	Spring Lake Outlet	0.5	1.2	1.5	
400	Little Mud Lake Outlet	3.6	4.7	6.3	
300	Van Luven Lake Outlet	0.5	1.5	7.1	
200	Hambly Lake Outlet	2.0	2.8	3.8	
100	Hardwood Dam Outlet	7.6	13.3	20.0	

Table 4-9: Peak Flow Summary for HEC-HMS Rainfall-Runoff Model, m³/s

*Denotes 1% AEP plus climate change with scaled increases in rainfall intensities per Section 4.6.

4.4 Snowmelt + Rainfall Model

As described in the 2002 MNR Technical Guide, Canadian flow data records commonly show that annual peaks and runoff volumes occur in the spring. The nearby Napanee River at Camden East flow gauge is consistent with this national trend. The local gauge has 93% percent of its annual instanteous peak occurring between December 30 and April 30 across its 46-yr data record.

A separate basin model was prepared in HEC-HMS for the snowmelt plus rainfall scenario, since spring melt events have different characteristics than rainfall only events. These characteristics generally include longer runoff durations, higher runoff volumes, saturated and/or frozen ground conditions, and increased lag times.

The same calibration process that was applied to the rainfall-runoff model was applied to the snowmelt plus rain model. The largest historical event on record that occurred in April of 2014 was selected as the calibration storm, and the Bellrock flow gauge in addition to the information on the Varty Lake and Cameron Swamp reservoirs were used to fill in the missing 'gaps' between the Upper Lakes watershed and the Camden East flow gauge. In the snowmelt plus rain calibration event, it was concluded that AMC III (i.e. saturated) conditions alone were not enough to produce the runoff rates observed in the 2014 event. Therefore, AMC III conditions in *combination* with a 7% increase in CN value (up to a maximum

CN value of 98) was applied. With this adjustment, the calibrated peak flow is within three (3) percent of the observed stream flow record (see Table 4-10); note that a minor transposition of flows was applied for the Cameron Swamp outlet per the same reasoning described in Section 4.3.

An essential component of the calibration for the HEC-HMS snowmelt basin model was the establishment of the distribution and runoff volume released from the snowpack in the 2014 event. Quinte Conservation provided Jewell with their snow melt model that was created by Dr. H. O. Schroeter in 2000 with revisions in September 2008 and February of 2010. The spreadsheet snowpack model is based on the GAWSER snowpack routine that has been through rigorous testing under separate projects prior to its use in the Napanee River Upper Lakes flood hazard mapping.

There are four key inputs into the Schroeter model: daily maximum temperature, daily minimum temperature, daily rainfall, and daily precipitation. For historical events, such as the 2014 flood, the historical climate inputs from the ECCC station at Hartington were supplied to the model. The historical climate inputs provide a reasonable estimate of the snow water content (SWC) and daily runoff that contribute to the corresponding stream flow gauge readings at the *Napanee River at Camden East*. Jewell converted the daily runoff output from the Schroeter model into hourly depths with the application of the sine function to represent the diurnal pattern of spring runoff that would occur due to daily temperature fluctuations (see Appendix C-2).

Table 4-10: Comparison of Observed vs. Modeled Peak Flows for the 2014 Flood Event

	Measured	HEC-HMS
Peak Flow (m ³ /s)	62.7	61.0
Time of Peak	4/15/2014 19:00	4/13/2014 19:00
Lag Time (hrs)	214.0	166.0

The adjustments to the CN values in the snowmelt basin model result in higher CN values and higher peak flow rates due to a greater amount of runoff volume rather than infiltration. This adjustment is consistent with the discussion in the 2002 Technical Guide that indicates runoff coefficients, directly related to the CN, may be 3 to 4 times higher in winter or spring melt events relative to other times of the year. The adjustments required to calibrate the snowmelt plus rainfall model are consistent with the provincial technical guidelines and thereby suitable for use in the statistical snowmelt events. The adjustments are also consistent with recent discussions with ECCC representatives in August of 2023 where ECCC confirmed that CN is the preferred parameter to be adjusted in the calibration process.

For the *statistical* snowmelt AEP events, the degree day method was applied with consideration of the two Meteorological Services of Canada (MSC) snowmelt equations for Ontario as indicated in the 2002 MNR Technical Guide. The MSC snowmelt equation for Model 5 was selected since it is intended for Southern Ontario and yields higher runoff volumes relative to the alternative MSC equation, Model 4, for Southern Ontario. The snowmelt plus rainfall frequency values published by MSC for the Hartington station were used to prepare the hyetographs supplied to the snowmelt simulations in HEC-HMS. The Hartington station has 45 years of record and located in close proximity to the Upper Lakes. The MSC frequency values range from 50 to 1% AEPs with daily volumes from 1 to 30 days (see Appendix C-1).

Local snowmelt characteristics were reviewed further by populating the Schroeter model with historic climate data from 1976 to 2023 to identify which durations produced the largest snowmelts. Out of the ten (10) largest annual instantaneous peaks that were produced by a snowmelt plus rainfall event at the

Camden East stream flow gauge, the average duration was 8.9 days. This suggests a 9-day snowmelt event is most likely to produce a 1% AEP storm event. However, since the historical record does not include all possible duration scenarios, Jewell tested the 1 to 5-day, 10 day, 15-day, 20-day, and 30-day durations to identify the critical duration.

Jewell concluded that the 3-day snowmelt event for the MSC snowmelt frequency values is the critical duration since it yields the largest peak flow at the downstream limit of the Upper Lakes study area.

A summary of AEP peak flows for the snowmelt plus rainfall scenario at each lake outlet and node of interest is shown in the table below. The maximum rise in water levels associated with the 1% AEP regulatory event is presented in Section 4.7.

Outlet of	Location		AEP	
Basin No.	asin No.		1%	0.5%
1600	Potspoon Lake Outlet	1.0	1.5	1.6
1500	30 Island Lake Outlet	1.0	1.1	1.1
1400	White Lake Outlet	1.5	2.4	2.7
1300	Westport Rd near Glendower	4.4	5.3	5.6
1200	St Andrews Lakes Outlet	1.5	1.9	2.1
1100	Cole Lake Outlet	4.9	6.5	9.4
1000	13 Island Lake Outlet	7.6	8.1	15.1
900	South Frontenac Rd at Godfrey	2.1	2.5	2.7
800	Cole Creek at Godfrey	4.9	5.9	6.2
700	14 Island Lake Outlet	0.4	1.5	1.9
600	Howes Lake Outlet	14.5	20.6	22.9
500	Spring Lake Outlet	1.3	2.2	2.5
400	Little Mud Lake Outlet	1.7	2.5	2.9
300	Van Luven Lake Outlet	1.6	2.0	2.2
200	Hambly Lake Outlet	1.6	1.8	2.1
100	Hardwood Dam Outlet	16.9	21.7	26.1

Table 4-11: Peak Flow Summary for Snowmelt Plus Rainfall AEP Events (3-Day Duration), cms

4.5 Index Flood Analysis

Jewell employed the Index Flood Analysis following the methodology established by the Ontario Ministry of Natural Resources to estimate design flows and assess the hydrology of the contributing drainage area. The Index Flood Analysis was included since its methodology relies on historical stream flow gauge data and based on experience it has shown to generally produce reliable flow estimates and often compares well with HEC-HMS modeling outputs. The Index Flood Analysis may be less suitable for the subject watershed since the Index Flod method relies in hydrologically similar watershed characteristics; the subject watershed has unique characteristics when considering its large lakes and outflow control structures at Hardwood Dam, Thirteen Island Lake Dam, and Fourteen Island Lake Dam. However, the Index Flood method was included for comparison purposes.

The Index Flood method relates the annual peak instantaneous flow determined for 247 stream gauges across Ontario to drainage area based on the *User Guide for Ontario Flow Assessment Tool (OFAT)* published by the Ontario Ministry of Natural Resources. Twelve regions across the province were identified as having similar characteristics and a regression curve was developed for each region. See Figure 4-22. The Upper Napanee Lake watershed is located in Region 1. The 1% AEP peak flow estimated from the Index Flood Analysis, located at the Hardwood Dam, is 50.7m³/s. The peak flows from the Index Flood analysis are included in the presentation of peak flows in Section 4.7.

The 50% AEP flows are resolved directly from the equation using the constant and exponent from Table 4-12. Other AEP flows may be derived from the 50% AEP flow by multiplying with the factors provided in Table 4-13.

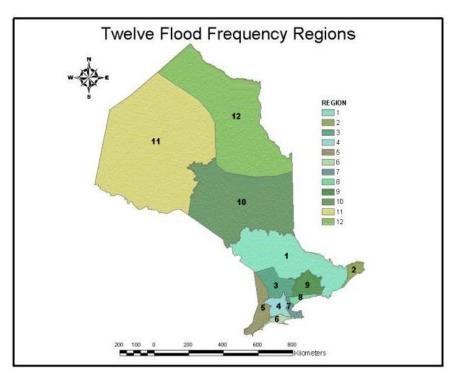


Figure 4-20: Index Flood Regions (Ministry of Natural Resources and Forestry, 2020)

Equation: Index Flood Method

 $Q_2 = CA^n$

Where:

Q₂ = 50% AEP (3 parameter Log Normal) flood A = Drainage Area (km²) C = constant

n = exponent (slope of the line)

Table 4-12: Table of Constant (C) and Exponent (n) for use in the Modified Index Flood Equation (Ministry of Natural Resources and Forestry, 2020)

Region	Constant (C)	Exponent n
1(a)	0.22 (A < 60 km²)	1.000
1 (b)	0.73 (A > 60 km ²)	0.707
2	0.51	0.896
3	0.20	0.957
4	0.71	0.842
5	0.45	0.775
6	0.41	0.806
7	1.13	0.696
8	0.73	0.785
9	0.40	0.810
10	0.28	0.849
11	0.38	0.706
12	0.59	0.765

Table 4-13: Ratio of Various Flood Frequencies to Q2 (Ministry of Natural Resources and Forestry, 2020)

Region	Q _{1.25} /Q ₂	Q ₂ /Q ₂	Q ₅ /Q ₂	Q ₁₀ /Q ₂	Q ₂₀ /Q ₂	Q ₅₀ /Q ₂	Q ₁₀₀ / Q ₂	Q ₂₀₀ /Q ₂	Q ₅₀₀ /Q ₂
1	0.95	1.00	1.24	1.43	1.62	1.86	2.04	2.23	2.48
2	0.94	1.00	1.29	1.52	1.74	2.04	2.25	2.45	2.72
3	0.93	1.00	1.33	1.62	1.89	2.25	2.54	2.82	3.19
4	0.93	1.00	1.32	1.57	1.80	2.13	2.37	2.60	2.92
5	0.94	1.00	1.27	1.50	1.74	2.06	2.34	2.62	2.96
6	0.91	1.00	1.43	1.78	2.13	2.60	2.96	3.33	3.84
7	0.94	1.00	1.27	1.47	1.66	1.90	2.07	2.24	2.47
8	0.92	1.00	1.43	1.85	2.30	2.96	3.46	4.00	4.77
9	0.94	1.00	1.27	1.50	1.72	2.02	2.26	2.49	2.80
10	0.95	1.00	1.20	1.35	1.48	1.64	1.77	1.90	2.07
11	0.93	1.00	1.33	1.62	1.90	2.32	2.67	3.05	3.55
12	0.94	1.00	1.22	1.38	1.52	1.68	1.80	1.90	2.05

Region	Minimum (km²)	Maximum (km²)
1	0.11	9270
2	76.1	3816
3	86.0	3960
4	2.5	5910
5	14.2	4300
6	5.2	697
7	63.5	293
8	4.9	800
9	24.3	1520
10	18.6	11900
11	0.7	24200
12	4250	94300

 Table 4-14: Limitation of Application of Index Flood Method Based on Drainage Area (Ministry of Natural Resources and Forestry, 2020)

4.6 Climate Change

In QC's meeting with the federal partners, it was noted that a preferred method to assess climate change scenarios is scaling rainfall intensity based on projected increase in degrees of warming. Jewell completed this preferred approach using the technical requirements outlined in the ECCC memorandum titled *Incorporating Climate Change in Floodplain Mapping under the Flood Hazard Identification and Mapping Program.* The 0.5% AEP was also assessed as a potential climate change scenario. The 0.5% AEP flows were included in the rainfall-runoff and snowmelt plus rain runoff models described in the previous subsections.

Recall that the Napanee River Upper Lakes are located within Zone 2 of the *Flood Hazard Criteria Zones* of Ontario and Conservation Authorities. The 1% AEP is the regulatory event.

The hourly rainfall that corresponds to the regulatory storm was adjusted using the mean annual temperature change obtained from the federal climate data portal for Verona, ON. Jewell followed the Ontario MNRFs recommendation of obtaining the value for the 50th percentile of the mean annual temperature change based on the CMIP5, RCP 4.5 scenario.

The year 2071 was selected since this is the furthest projected date in the Excel download from the federal climate data portal. The mean annual temperature change for the year 2071 is an increase of 3.3 degrees Celsius (see Appendix E). An excerpt from the technical memo defining the equation used to convert historic rainfall intensity and temperature change to the future estimated rainfall intensity is provided in Figure 4-23.

The increase in temperature results in a significant (25%) increase in precipitation volume (see Table 4-15).

The rainfall-runoff model is particularly sensitive to climate change since the increased runoff produces higher inflows to the lakes, and also depletes the storage within the reservoirs. The storage-discharge charts in Section 4.3.6 show that the outflow rates generally increase at a faster rate as the storage becomes depleted. The result is that the rainfall-runoff model is very sensitive to the increased rainfall projected in the climate change scenario.

Time	Historic Intensity (R _c)	Percent of 24 Hour	Future Estimated Intensity (R _P)	% Increase in Intensity
Hour	mm/hr	mm	mm/hr	
1	1.1	1.1	1.3	
2	1.1	1.1	1.3	
3	1.3	1.3	1.6	
4	1.3	1.3	1.6	
5	1.6	1.6	1.9	
6	1.6	1.6	1.9	
7	1.9	2.0	2.4	
8	1.9	2.0	2.4	
9	2.6	2.7	3.3	
10	3.3	3.4	4.1	
11	5.2	5.4	6.6	
12	41.6	42.8	52.0	25.0%
13	10.6	10.9	13.2	25.0%
14	4.7	4.8	5.8	
15	2.9	3.0	3.6	
16	2.9	3.0	3.6	
17	1.7	1.8	2.2	
18	1.7	1.8	2.2	
19	1.7	1.8	2.2	
20	1.7	1.8	2.2	
21	1.2	1.2	1.5	
22	1.2	1.2	1.5	
23	1.2	1.2	1.5	
24	<u>1.2</u>	<u>1.2</u>	<u>1.5</u>	
Total	97.1	100	121.4	25.0%

Table 4-15: Future Estimated Rainfall Intensities for 1%, 24-Hr AEP

Determine future estimated rainfall intensity value (R_P), according to the historic estimated rainfall intensity (R_c) and the long term (30-year mean) annual mean temperature change (ΔT) using equation (1):

 $R_p = R_c \ x \ 1.07^{\Delta T}$

Figure 4-21: Excerpt from Technical Memo with Equation for Future Estimated Rainfall Intensities (Environment and Climate Change Canada)

(1)

It should be noted that climate change impacts on peak flows are inherently difficult to quantify due to the reality of Earth's extremely complex global atmospheric and hydrologic systems. The climate change adjustment applied above relies on the relationship between temperature increase and rainfall depth. Therefore, the adjustment addresses a climate change scenario for a precipitation-driven flood event.

Based on calculations and an assessment of the data, climate change is expected to have a greater impact on rainfall-driven runoff events rather than a snowmelt driven runoff event.

The stream flow gauge data presented in Section 4 generally illustrates the expected AEP flows that would occur during a freeze-thaw/snowmelt condition. This is because most annual instantaneous peaks occur in the spring months. These events produce high peak flows due to a large volume of stored water content that is released when warmer temperatures occur.

With warmer seasonal temperatures generally expected due to climate change, it is reasonable to expect less stored water content during the winter months, since the period of below-freezing temperatures would be shortened with higher average temperatures. With less stored water content, it is possible that instantaneous peaks produced in a spring melt condition may not increase even with increased rainfall depths for single event conditions. Jewell investigated this further by testing the sensitivity of the Schroeter model to the projected temperature and precipitation increases. *Individual* increases for temperature and precipitation were also completed to better understand their individual effects on the model.

The Schroeter model predicts that an increase in precipitation by 25%, with no temperature adjustments, would *increase* the maximum snow water content (SWC) by 51%. The model predicts a mean temperature increase of 3 degrees Celsius, with no precipitation adjustments, would *decrease* the maximum SWC by 36%. It predicts that the *combination* of temperature and precipitation increases will produce net reduction of 9% in the maximum SWC.

A review of average monthly temperatures, with the mean daily maximum and minimums increased by 3 degrees Celsius, is presented in Figure 4-24. The 3-degree temperature increase would result in a daily maximum average temperature in the coldest month (January) that is near zero. This would encourage more frequent intermittent melting periods, and results in the net decrease in maximum SWC in the Schroeter model.

While there are many combinations of future temperature and precipitation that could produce higher or lower maximum SWC values, the key takeaway is that climate change is expected to have a greater impact on rainfall-driven flood events rather than spring melt events. Since higher future temperatures

will likely offset some of the future increases in precipitation, the extent of the net change to the maximum SWC and subsequent snowmelt plus rain events is largely unknown. It is recommended that potential impacts due to climate change be accommodated by utilizing the federal climate data adjustments for rainfall-driven events, and the 0.5% AEP for snowmelt-driven events.

Adjustment	Average Maximum SWC (mm)	Percent Change in Maximum SWC
No adjustment	75	-
Temperature +3°C	48	-36%
Precipitation +25%	113	+51%
Temperature +3°C, Precipitation +25%	68	-9%

 Table 4-16: Temperature and Precipitation Impacts on Maximum SWC per the Schroeter Snowmelt Model

Figure 4-22: Projected Temperature Increases at Hartington ECCC Station Due to Climate Change

4.7 Presentation of Peak Flows

The peak flows for the Napanee River Upper Lakes are summarized below in Table 4-17. The peak flow rates in the table below are applied to identify the flood hazard limits. The climate change peak flows in Table 4-9 (see Section 4.3.8) will also be included in the hydraulic model computations.

Outlet of			, 3-Day It + Rain	100-Yr, 24-Hr Rainfall	
Basin No.	Location	Peak Flow (cms)	*Max. Water Level Rise (m)	Peak Flow (cms)	*Max. Water Level Rise (m)
1600	Potspoon Lake Outlet	1.5	0.35	1.0	0.26
1500	30 Island Lake Outlet	1.1	0.54	1.0	0.24
1400	White Lake Outlet	2.4	0.46	1.0	0.26
1300	Westport Rd near Glendower	5.3	-	26.5	-
1200	St Andrews Lakes Outlet	1.9	-	0.7	-
1100	Cole Lake Outlet	6.5	-	3.1	-
1000	13 Island Lake Outlet	8.1	1.1	6.9	0.8
900	South Frontenac Rd at Godfrey	2.5	-	14.1	-
800	Cole Creek at Godfrey	5.9	-	47.3	-
700	14 Island Lake Outlet	1.5	0.65	0.3	0.32
600	Howes Lake Outlet	20.6	1.78	12.5	1.33
500	Spring Lake Outlet	2.2	-	1.2	-
400	Little Mud Lake	2.5	-	4.7	-
300	Van Luven Lake	2.0	1.78	1.5	1.33
200	Hambly Lake Outlet	1.8	1.67	2.8	1.27
100	Hardwood Dam Outlet	21.7	1.67	13.3	1.27

Table 4-17: Peak Flow Summary for Napanee River Upper Lakes

*Maximum water level rise measured from outlet invert.

Table 4-18 provides a comparison of peak flows for each of the hydrologic modeling methods. The 2023 regulatory peak flow of 21.7m³/s is below the peak flow from the transposed GFA result; however, the 21.7m³/s accounts for the high tailwater imposed by the Cameron Swamp at the outlet of the study area, whereas the GFA and Index Flood methods do not. In a free-flowing condition, the peak outflow from the study area would be 31.4 m³/s. The 2024 peak flow is less than the 1981 study, however the water level at the outlet and lower lakes is higher than the 1981 results. This is in large part due to the tailwater condition at the Cameron Swamp which is discussed further in Section 5.1.3. The high tailwater at Cameron Swamp increases the water level and reduces the peak flow in the 2024 assessment.

	1981 Crysler & Lathem		GFA (Transposed)			HEC-I	HMS
Return Period	Rain Only	Spring Melt + Rain	Rain Only	Spring Melt + Rain	Index Flood	Rain Only	Spring Melt + Rain
100-Yr	25	50	16.4	24.7	50.7	12.7	21.7

Table 4-18: Summary of Peak Flows from Alternative Methods for Napanee River Upper Lakes (m3/s)

*Denotes regulatory 1% AEP peak flow.

4.8 Combined HEC-HMS & HEC-RAS Models

The HEC-HMS model used in the model calibration (Section 4.3.1) was advanced further in Section 5 that follows to include the channel routing that occurs as part of the hydraulic simulations. Since the hydraulic model is predominantly a 2D, unsteady flow model, the travel time and roughness of the channel and overbank areas are reflected in the outflow hydrographs. The wetlands and smaller lakes are also included in the hydraulic model as they have been either modeled as a 2D flow area or as a storage area depending on their size and dimensions.

The annotated schematic below illustrates the sequence of the HEC-HMS and HEC-RAS model runs. In model testing, it was found that reservoir-routing in HMS and RAS produced similar results. For simplicity and faster run times, each lake that has a free-flowing outlet was modeled in HEC-HMS. For lakes with substantial backwater impacts, particularly at the bottom end of the study area (Verona, Howes, Hambly, Van Luven), they were modeled as a storage area in HEC-RAS. St. Andrews Lake was also modeled in RAS due to the strong backwater imposed by the K&P Trail crossing.

Figure 4-25 shows that there are six (6) HEC-RAS models applied to calculate the hydraulic outputs for the study area. Table 4-19 summarizes the corresponding Reach Number (see Section 5), route length, primary lake, and wetland/sub-lake associated with each hydraulic model.

Note that the peak flows presented in Section 4.7 were obtained using the modeling approach presented in Figure 4-25.

A seventh (7th) hydraulic model was prepared as a separate 1D, steady flow model to identify the shape of the rating curve for the Cameron Swamp outlet that is necessary to identify the tailwater conditions for the Napanee River Upper Lakes study area. This 7th model is 7.3 km downstream of the study area and upstream of Petworth Road; it is discussed in detail in Section 5.1.3.

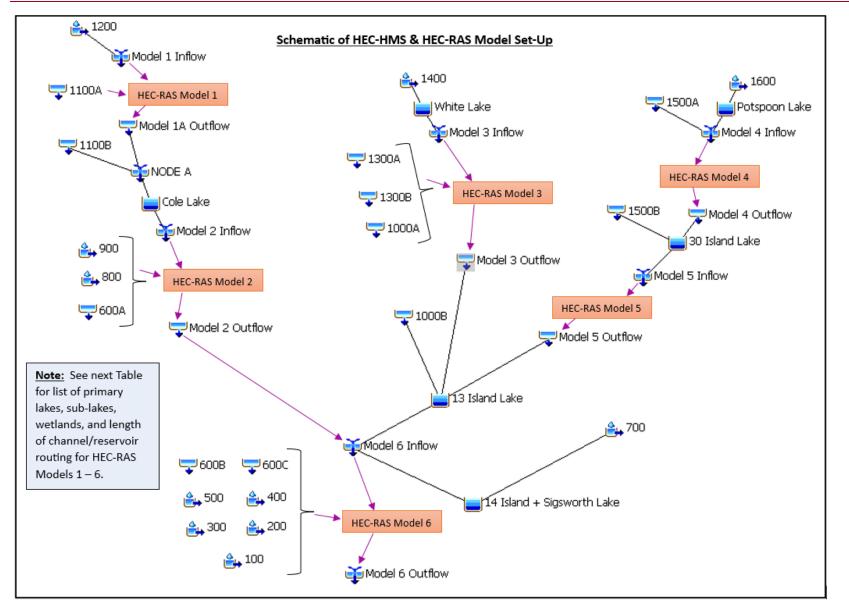


Figure 4-23: Schematic of Interactive HEC-HMS & HEC-RAS Models

 Table 4-19: HEC-RAS Models with Corresponding Reach, Route Lengths, Primary Lake(s), Wetland(s) and Sub-Lake(s)

HEC-RAS Model	Reach No.	Route Length (km)	Primary Lake(s)	Wetland # / Sub-Lake
1	1	1.7	St. Andrews Lakes	1A, 1B, 1C
2	2	6.2	N/A	2A, 2B, 2C
3	6	5.3	N/A	6A, 6B
4	7	2.5	N/A	Connector Lake 7A, 7B
5	8	1.2	N/A	8A, 8B
6	3, 4, 5, 9, 10, 11	N/A - Lake Dominated	Verona, Howes, Hambly, Van Luven Lakes	Bass, Spring, Mud Lakes, Wetland 9

5 Hydraulics

The hydraulic analysis was prepared using HEC-RAS version 6.4.1. The HEC-HMS peak flows from Section 4 were applied in the hydraulic model to delineate the flood hazard limits for the Napanee River Upper Lakes drainage system. The HEC-RAS model simulates both the 1% AEP snowmelt plus rain and 1% AEP rainfall only events as separate scenarios to determine the governing condition for each portion of the watershed.

In addition to the thirteen main lakes of interest, the hydraulic system is defined by many wetlands and smaller lakes that act as hydraulic connections among the Napanee River Upper Lakes system. More traditional channels with moderate slopes and defined overbank areas are present to a much lesser extent. This subsection describes the modeling approach, bridge and culvert crossings, storages areas, and water levels.

5.1 Model Set-Up

HEC-RAS Version 6.4.1 and HEC-HMS Version 4.11 were used for the modeling of the Napanee River Upper Lakes (Brunner, 2023), (Bartles, et al., 2022). The HEC-RAS model applies the hydraulics software used to simulate the flood limits that result from a large surface runoff event. This section describes the model set-up including the field survey, computational mesh, hydraulic structures, storage areas and model run scenarios.

Due to the large size of the study area, its several branches, and many lakes and wetlands, the hydraulic model was discretized into eleven (11) reaches (see Figure 5-3). The model discretization for the eleven reaches is summarized in Section 5.2.

5.1.1 Field Survey

The LiDAR data described in Section 4.1 was supplemented by site-specific survey data from Jewell's survey crew using a GPS and a total station. The GPS was the main equipment used for the field survey. The GPS survey results were converted to the CGVD 2013 datum and imported into the terrain layer as an overlay to the LiDAR data. For local surveyors, a conversion of -0.33m can be used to convert from datum CGVD28 to CGVD 2013. This conversion is based on a comparison of elevations in the field measured at the same location in each datum. The projection settings in the model are NAD 1983 UTM Zone 18.

Historically, 1-dimensional hydraulic models have been used for floodplain mapping. This type of model requires cross-section data to be set up by the user to represent the geometry data applied in the hydraulic model calculations. With advancements in the HEC-RAS modelling software that is developed and distributed freely by the U.S. Army Corps of Engineers, 2-dimensional modelling presents an alternative that can provide added benefits depending on the river of interest.

A 2-dimensional model was selected for the Napanee River Upper Lakes for the following reasons:

- To improve upon the channel routing options in HEC-HMS; the Napanee River Upper Lakes do
 not have a uniform river cross-section throughout the study area due to the many wetlands and
 connector lakes. A 2D hydraulic model substitutes a 'representative' cross-section with a predetermined number of grid cells set throughout the study area to allow flow to be routed using
 its proper geospatial geometry.
- To investigate further flow attenuation that would be present within the additional wetlands and smaller lakes using storage areas or 2D flow areas.
- To achieve more realistic modeling results in low-lying areas.

• To take advantage of detailed terrain and survey data; HEC-RAS software uses this data to produce output results for depth, velocity, and water surface elevations at any georeferenced location within the flood study area.

5.1.2 Computational Mesh

The terrain layer was used to develop a computational mesh that ultimately controls the movement of water through portions of the Napanee River Upper Lakes channels and surrounding overbank or wetland areas. For each computation cell, an elevation-volume relationship is calculated to produce a single water surface elevation.

The cell sizes for the 2D flow areas, including refined areas for creek sections and roads, are summarized by the attribute tables included in Appendix I.

5.1.3 Boundary Conditions

The Napanee River Upper Lakes hydraulic model includes three different types of boundary conditions (BCs). One is an inflow BC and the other two are outflow BCs.

The inflow BCs are represented by an inflow hydrograph. The 2D unsteady flow model received its flow data from an *inflow* hydrograph where the incoming flows change with time. The inflow hydrographs were obtained from the HEC-HMS model for individual sub-catchments. Each inflow BC corresponds to an inflow hydrograph. The two types of *outflow* BCs applied in the Napanee River Upper Lakes hydraulic model are a stage hydrograph and normal depth.

The stage hydrograph is used to reflect the potential backwater impacts from downstream lakes and ensures the water levels in the upstream channels are adjusted accordingly. The normal depth outflow BC is used in locations where there is no immediate lake downstream of a channel outflow. The normal depth was set to 1% to simulate free-flowing conditions.

Cameron Swamp

In spring melt or high flow conditions, the Hardwood Dam is submerged due to the backwater imposed by the Cameron Swamp. The Cameron Swamp is a large reservoir that receives majority of runoff that contributes to WSOC flow gauge *02HM007 Napanee River at Camden East*. This reservoir establishes the tailwater for the lower lakes of the study area (i.e. Verona, Howes, Hambly, Van Luven) and is critical to accurately model their water levels.

The Cameron Swamp does not have a hydraulic structure controlling its outflows. From site observations, review of LiDAR data, and a review of bridge elevations at the nearest hydraulic structure downstream of the swamp (Petworth Road bridge), it was confirmed that it is a natural channel outlet with a constriction point 3.5km upstream of Petworth Road that controls the water levels in the Cameron Swamp. This natural outlet channel was modeled in HEC-RAS to develop a rating curve that is representative of the Cameron Swamp outlet (see Figure 5-1).

The Cameron Swamp outlet rating curve is presented in Figure 5-2. Fortunately, the Cameron Swamp receives majority of the runoff that contributes to WSOC stream flow gauge *02HM007 Napanee River at Camden East.* Therefore, the flows selected to develop the rating curve are the same as those obtained from the General Frequency Analysis (GFA) described previously in Section 4.2 and presented in Table 4-6. This approach applies an assumption that the GFA results at the stream flow gauge are representative of the Cameron Swamp outflows (i.e. no transposition of flows). This is a reasonable assumption since the massive amount of storage in the Cameron Swamp would result in a peak outflow that occurs at a largely different timestamp relative to the peak outflows from the much smaller downstream

catchments of EXT-3 and EXT-4 from Figure 4-7. The application of a transposition of flow for the production of the rating curve would be an over-simplification that would not account for the timing of the hydrographs. Therefore, a transposition of flows was not utilized in the development of the Cameron Swamp rating curve.

The GFA peak flows for the 2-, 10-, 50-, 100-, 200-, and 500-yr return periods were applied in a 1D steady flow model of the outlet channel to develop the Cameron Swamp rating curve. Note that this 1D steady flow model is separate from the hydraulic model used for the Napanee River Upper Lakes study area; the sole purpose of the 1D steady flow model for this channel is to identify the water surface elevation vs. flow relationship at the Cameron Swamp outlet.

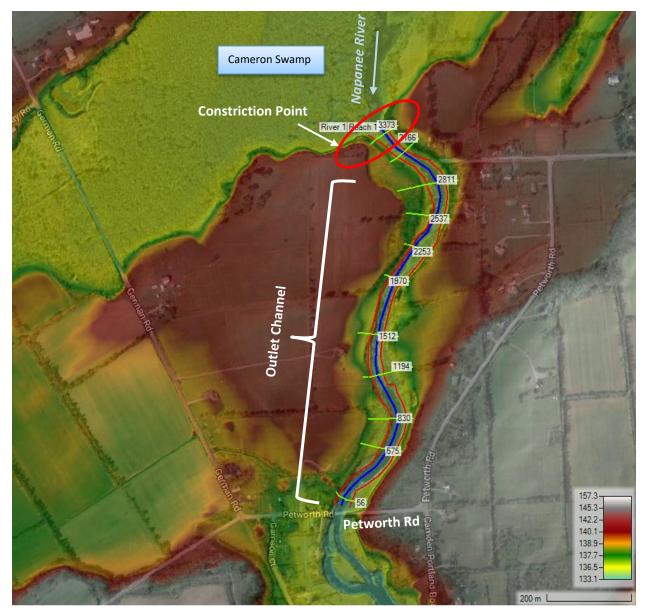


Figure 5-1: Cameron Swamp Constriction Point and Outlet Channel in HEC-RAS to Obtain Outlet Rating Curve

Once the Cameron Swamp outlet rating curve was established, it was verified by matching field measurements of water levels in the vicinity of the Hardwood Dam to the flows at the WSOC 02HM007

stream flow gauge during the time of measurement. The Jewell surveyors measured the water level and noted the time of measurement on November 1, 2023 and March 6, 2024. Then, the WSOC flow gauge was reviewed for its nearest timestamp to obtain the corresponding flow measurement. The measured water level and stream flow gauge data was used to identify the observed data points denoted as a red "X" in Figure 5-2.

Field measurements #1 (Nov. 1, 2023) and #2 (Mar. 6, 2024) were obtained from Jewell staff. Field measurement #3 was provided from Quinte Conservation for the peak water level on April 15, 2014.

Field measurement #1 represents a low flow condition where the tailwater of the study area is below the invert of the Hardwood Dam. Field measurement #2 represents a common spring-melt condition where the Harwood Dam is submerged. Field measurement #3 represents the high tailwater condition that would be similar to a 1% AEP event since the measurement was obtained at the same time as a 79.7 m³/s peak flow at the stream flow gauge that is similar to the 1% AEP flow of 80.8 m³/s from the GFA. Field Measurement #3 was obtained at the Desert Lake Road bridge; this measurement was conservatively assumed to be equal to the water level in the vicinity of the Hardwood Dam, although in reality the water level would likely have been slightly lower at Hardwood Dam.

The Cameron Swamp rating curve is used to provide the general shape of the graph of tailwater vs. flow that would occur near the Hardwood Dam. The massive size of the Cameron Swamp is evident in a measurement from the length of flow path a water particle would travel from the Hardwood Dam to the Cameron Swamp outlet; this distance is 7.3 km. At this size, even a minimal gradient creates a minor difference in water level between the Cameron Swamp outlet and the Hardwood Dam outlet. In low flow conditions, this gradient is 0.0055% (0.000055 m/m) and creates a 0.41m difference in elevation. As the flows become greater, the gradient becomes lower and the water level at the Cameron Swamp become closer to the Hardwood Dam outlet, although still slightly lower. This is evident in the two blue lines shown in Figure 5-2.

The dashed blue line in Figure 5-2 was derived from field measurements and was matched to the general shape of the Cameron Swamp rating curve. This dashed blue line was applied as the tailwater condition for each respective return period event in both *rainfall only* and *rainfall plus spring melt* conditions.

For rainfall only conditions, it would be unrealistic to apply the GFA return period results from Table 4-6 since these results are derived from a dataset that is dominated by annual instantaneous peak flows that occurred in a *spring melt plus rain* condition. ECCC provided Jewell with the flow records at WSOC Flow Gauge *02HM007* at 15 to 30-minute intervals for its full length of record (1974 – 2022). Jewell used this data to identify the maximum instantaneous peak flow that occurred between May 1st and December 31st for each year. This set of maximum instantaneous peaks was used to prepare the dataset to calculate a GFA on *rainfall only* events. As expected, the rainfall only events (i.e. storms between May 1st and December 31st) generally produce lower instantaneous peak flows at the stream flow gauge, meaning they would produce a lower water level in the Cameron Swamp, and subsequently a lower tailwater condition for the Napanee River Upper Lakes study area.

The 2nd column in Table 5-1 below is supplemental to the Flood Frequency Analysis described in Section 4.2 of this report; it represents the statistical return period flows for *rainfall only* events. The dashed blue line in Figure 5-2 was used to obtain the tailwater elevations for the study area under both spring melt plus rainfall conditions and rainfall only conditions (see Table 5-1).

Quinte Conservation & The Townships of South and Central Frontenac FHIMP ON22-46; Napanee River Upper Lakes Flood Hazard Mapping

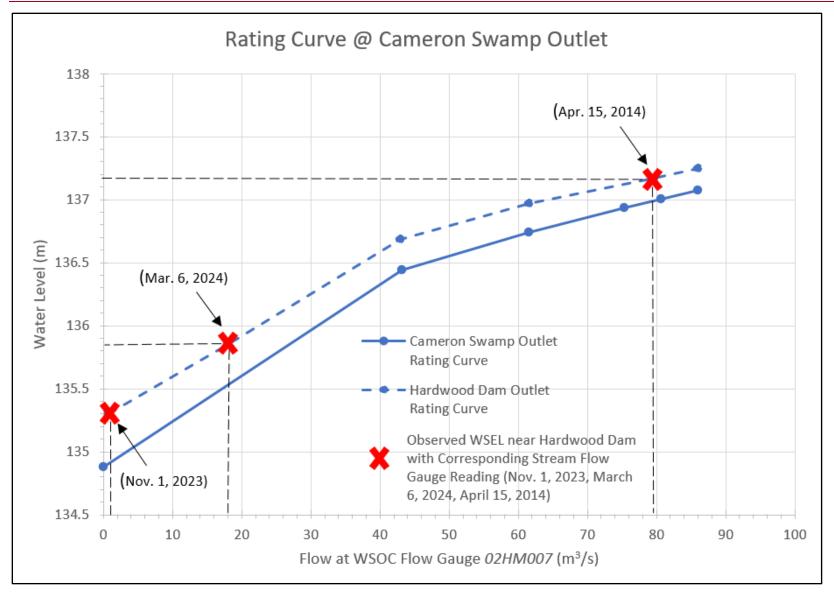


Figure 5-2: Rating Curve at Cameron Swamp Outlet with Comparison to Observed Water Levels near Hardwood Dam

AEP (%)	Rain Only		Snowmelt Plus Rain	
	GFA Q _{peak} (m ³ /s)	Tailwater (m)	GFA Q _{peak} (m ³ /s)	Tailwater (m)
50	23.0	136.02	43.2	136.69
10	37.5	136.51	61.5	136.97
2	48.9	136.78	75.3	137.12
1	53.5	136.85	80.7	137.18
0.5	58.0	136.92	86.0	137.24

Table 5-1: Tailwater Elevations for Napanee River Upper Lakes Study Area

*Tailwater represents water level at Hardwood Dam.

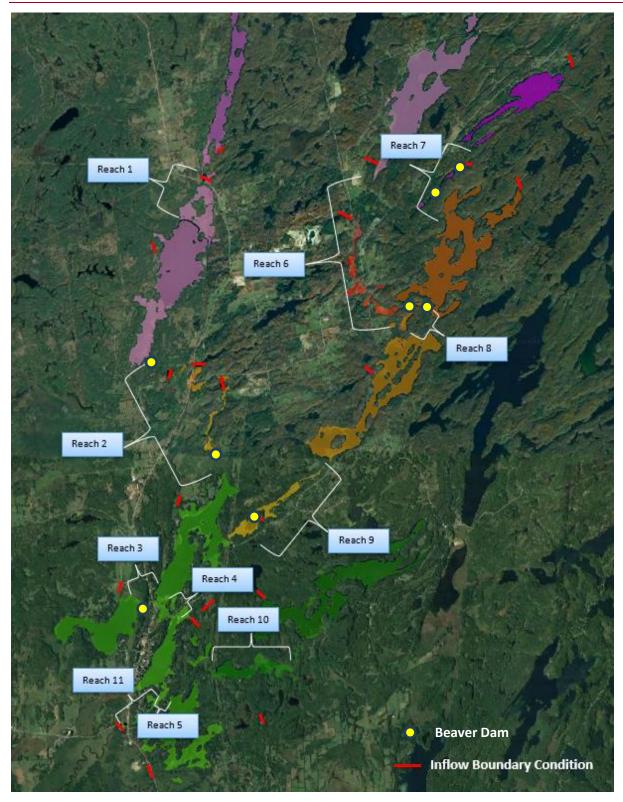


Figure 5-3: Reach and Inflow Boundary Condition Location Summary

5.1.4 Storage Areas

For areas with significant level pools (i.e. wetlands, lakes, and swamps), storage areas were connected within the hydraulic model using a boundary condition or hydraulic connection. The storage areas within the HEC-RAS model simulate the reservoir routing for prominent lakes, sub-lakes, and wetlands throughout the study area. The storage areas are routed using their stage-storage relationship combined with their outlet configuration using an SA/2D connection. The SA/2D connection feature is used to connect lakes and wetlands, and is also used to connect lakes and wetlands to road crossings and/or the lake outlet control structures.

5.1.5 Model Run Scenarios

Several model runs were completed to cover different runoff scenarios. These scenarios are listed below.

- 10% AEP rainfall event.
- 10% AEP snowmelt plus rain event.
- 1% AEP rainfall event.
- 1% AEP snowmelt plus rain event.
- 0.5% AEP snowmelt plus rain event (i.e. spring melt climate change scenario).
- 1% AEP rainfall event with increased rainfall and sub-catchment flows based on ECCC methodology for climate change as applied in the *Section 4.6.*
- Simulation with beaver dams in place for the 1% snowmelt plus rain event.
- Simulation with high Manning's n values to assess the hydraulic model sensitivity to this parameter (see Section 7).
- 2-, 5-, and 50% AEPs were also modeled for rainfall only and rainfall plus snowmelt conditions.

The model run scenarios above were applied in the model set-up to obtain the results presented in Section 6.

5.2 Napanee River Upper Lakes Model Discretization

The eleven (11) reaches that comprise the Napanee River Upper Lakes study area are individually summarized below.

5.2.1 Reach #1: St. Andrews Lake to Cole Lake

Reach #1 extends from the outlet of St. Andrews Lake to the inlet of Cole Lake (see Figure 5-4). Reach #1 is defined by a series of wetlands, and includes Crossings #1-4. The culvert crossings are summarized in Section 5.3.

Per Section 4.3, St. Andrews Lake is controlled by three 750mm diameter culverts at St. Andrews Lake Lane. It can also be controlled by the backwater imposed by the crossing at the K&P Trail. The wetland upstream of the K&P Trail acts as the tailwater for the St. Andrews Lake Lane crossing and subsequently can affect the St. Andrews Lake water level. Given the series of wetlands that affect the tailwater immediately downstream of St. Andrews Lake, this lake was included as part of the HEC-RAS hydraulic model for Reach #1.

Downstream of the K&P trail there is a wetland at a lower elevation, followed by another wetland on the downstream side of Highway 38. The series of wetlands were modelled using a 2D flow area. The flood limit and water surface elevations (WSELs) depicted in Figure 5-4 are governed by the 1% AEP rainfall plus snowmelt event.

Stage and flow hydrographs for the two crossings that can control the water levels in St. Andrews Lake are provided in Figures 5-5 and 5-6. The stage hydrographs represent the headwater (HW) and tailwater (TW) on each side of the crossing. The flow hydrograph represents the outflow from the culvert crossings.

Quinte Conservation & The Townships of South and Central Frontenac FHIMP ON22-46; Napanee River Upper Lakes Flood Hazard Mapping

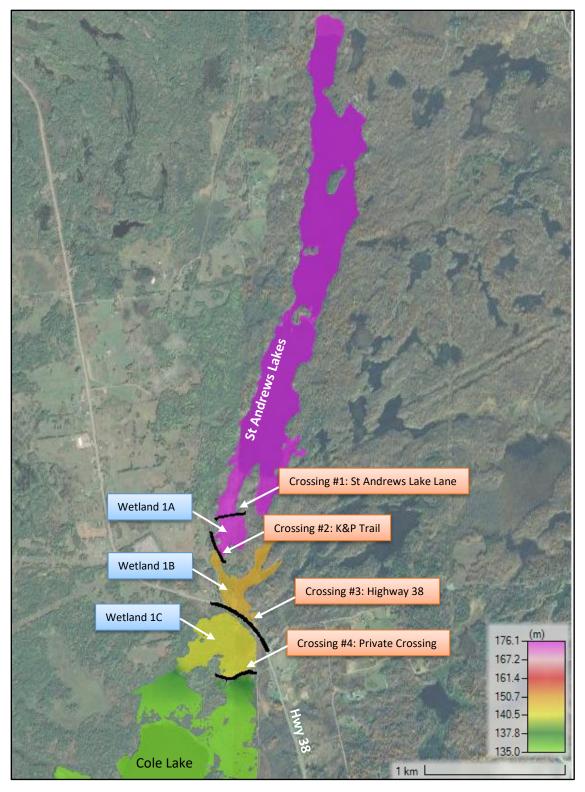


Figure 5-4: Reach#1 - St. Andrews Lake to Cole Lake

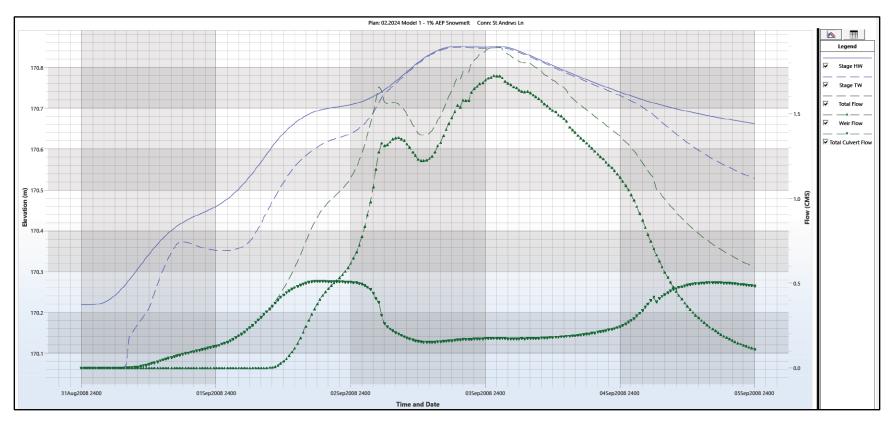


Figure 5-5: St. Andrews Lake Lane Stage and Flow Hydrograph; 1% AEP Rainfall Plus Snowmelt

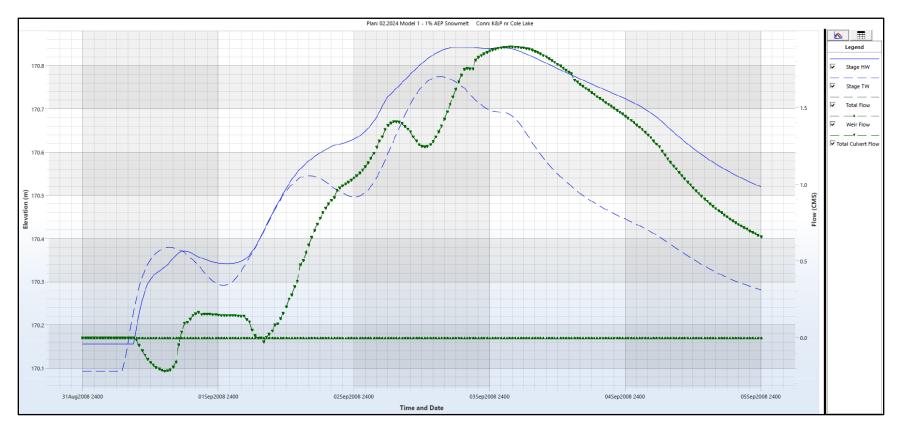


Figure 5-6: K&P Trail Outlet Stage and Flow Hydrographs; 1% AEP Rainfall Plus Snowmelt

5.2.2 Reach #2: Cole Lake to Howes Lake

Reach #2 extends from the outlet of Cole Lake to the inlet of Howes Lake (see Figure 5-7). Reach #2 is defined by a combination of channels and wetlands, and includes Crossings #5-9. The culvert crossings are summarized in Section 5.3.

A beaver dam currently establishes the lake level for Cole Lake. Since beaver dams will not be relied upon as a flood control structure, the beaver dam is removed in the model and a free-flowing channel is used for the outlet. Since there is no reservoir immediately downstream of the Cole Lake outlet, Cole Lake was not modelled in HEC-RAS since the HMS reservoir-routing would be sufficient.

The abrupt change in colour in Figure 5-7 illustrates the presence of the crossings and the backwater they impose near Crossings #5, #6, and #9. Crossing #7 is immediately upstream of a wetland and has lesser backwater impacts upstream.

Quinte Conservation & The Townships of South and Central Frontenac FHIMP ON22-46; Napanee River Upper Lakes Flood Hazard Mapping

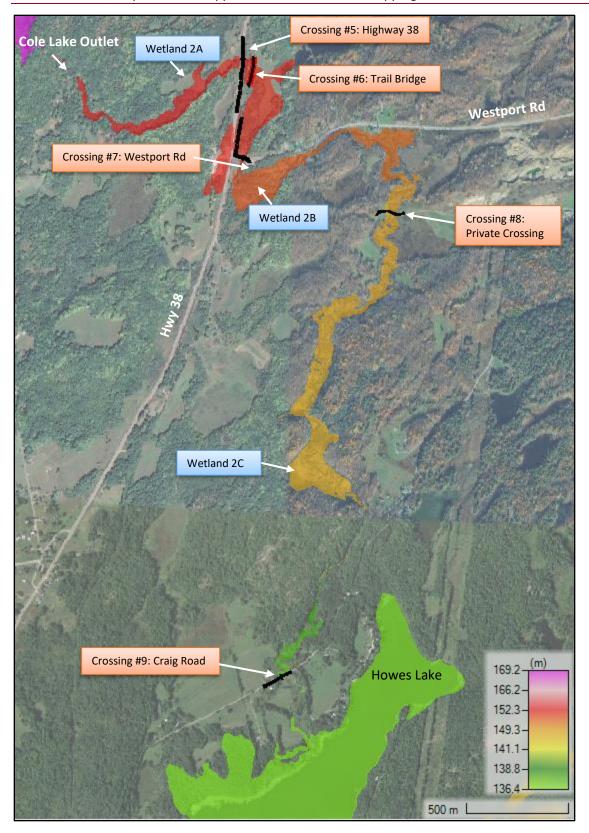


Figure 5-7: Reach #2 – Cole Lake to Howes Lake

5.2.3 Reach #3: Van Luven Lake to Howes Lake

Reach #3 connects Van Luven Lake to Howes Lake (see Figure 5-8). Reach #3 is a relatively short reach and its purpose is to investigate the backwater impacts from Howes Lake on the Van Luven water levels. Crossing #10 is a concrete box culvert across Highway 38 that acts as the control for Van Luven Lake. The rainfall plus snowmelt condition governs the 1% AEP regulatory flood limit. A plot of the stage and flow hydrographs for Van Luven outlet control crossing is provided in Figure 5-9.

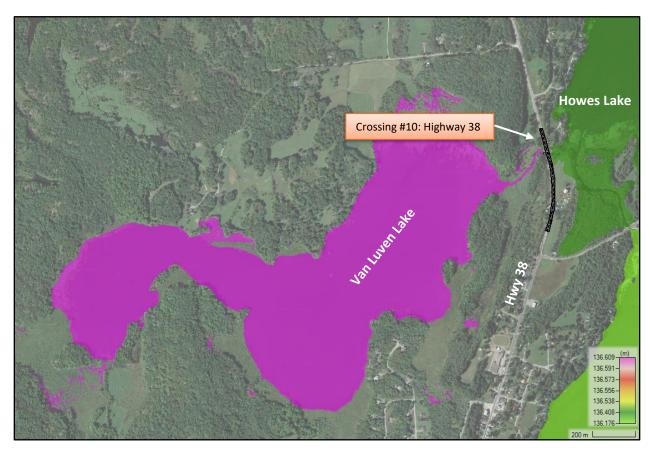


Figure 5-8: Reach #3 Plus Van Luven Lake

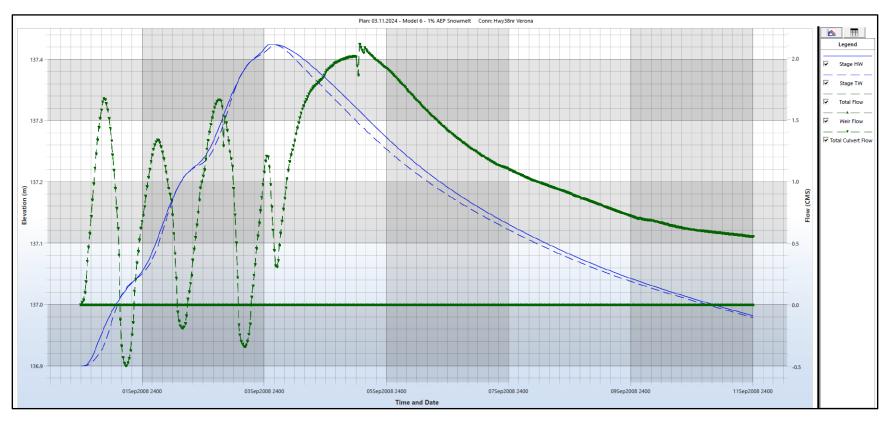


Figure 5-9: Reach #3 - Van Luven Lake Outlet (Crossing #10) Stage and Flow Hydrograph

5.2.4 Reach #4: Howes Lake to Verona Lake

Reach #4 connects Howes Lake to Verona Lake with the bridge at Crossing #11: Desert Lake Road (see Figure 5-10). Howes Lake receives significant inflow peaks and runoff volumes since it is the confluence for the majority of the Napanee River Upper Lakes system. The Desert Lake Road bridge has a large span and the contraction for the outlet channel provides some flow attenuation before runoff enters Verona Lake. Figure 5-11 shows the flow and stage hydrographs for the Desert Lake Road crossing that represents the outlet of the connector channel from Howes Lake to Verona Lake.

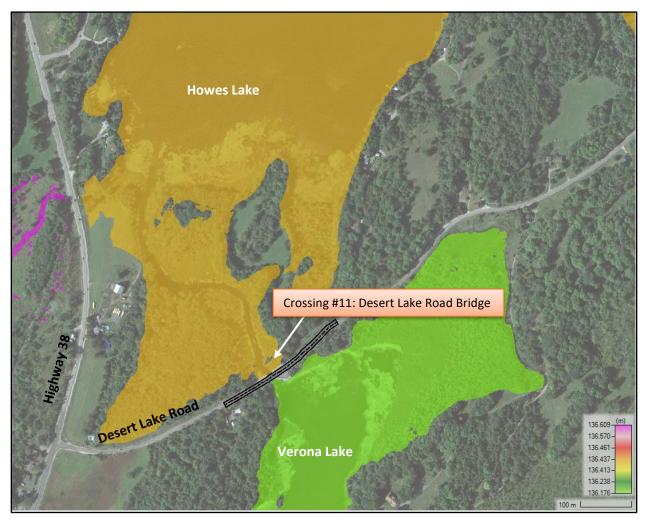


Figure 5-10: Reach #4 – Howes Lake to Verona Lake

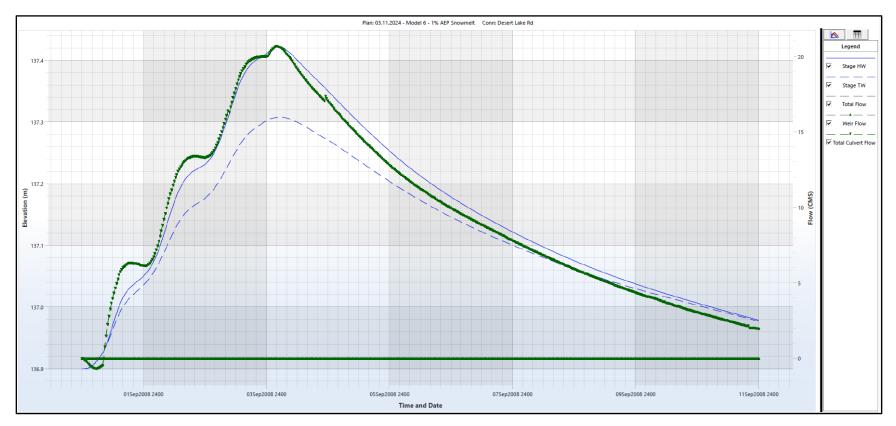


Figure 5-11: Stage and Flow Hydrograph for Reach #4 Outlet at Desert Lake Road for 1% AEP Snowmelt Plus Rain Event

5.2.5 Reach #5: Hambly Lake to Verona Outlet Channel

Reach #5 is the outlet channel from Hambly to Verona Lake. The Cedarwoods Drive crossing (Crossing #12) is within this reach. The Cameron Swamp controls the regulatory water level for Hambly Lake similar to the Cameron Swamp controls for Verona Lake (see Figure 5-12).

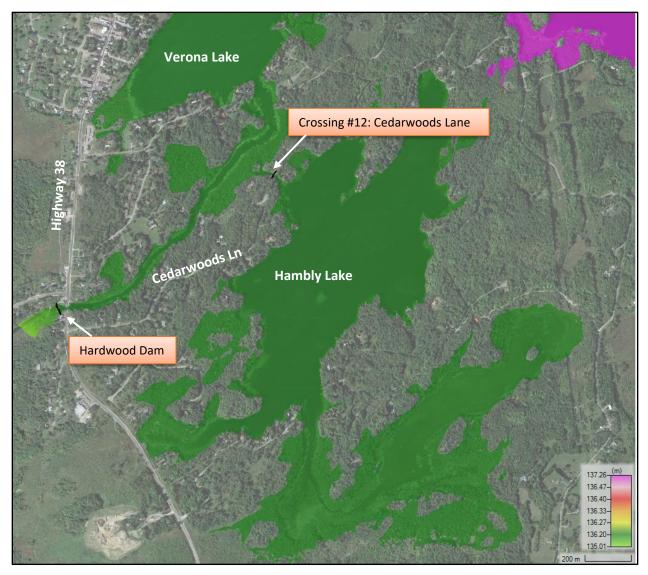


Figure 5-12: Reach #5 and Hambly Lake

5.2.6 Reach #6: White Lake to 13 Island Lake

Reach #6 extends from the outlet of White Lake to the inlet of Thirteen Island Lake (see Figure 5-13). Reach #6 is defined by a combination of channels and wetlands, and includes Crossings #13-17.

The outlet of White Lake is currently a beaver dam; the beaver dam was removed in the model to allow the outlet control to be the natural channel outlet. The White Lake channel outlet and the entirety of Reach #6 is modeled with a 2D flow area. The natural channel outlet for White Lake outlets to a wetland upstream of Buck Bay Road. Buck Bay Road is also bound by a wetland on its downstream side. With the

2D flow area and topographic data in the terrain model, the TW condition is accounted for in the hydraulic calculations.

The remaining crossings within Reach #6 have similar characteristics to Buck Bay Road; meaning they are bound by wetland areas. Bunker Hill Road A (Crossing #17) is the most downstream crossing within this reach and its TW condition is set by the stage hydrograph applied at Thirteen Island Lake.

Section 3 showed the 1% AEP rainfall event produces the largest peak flows from individual subcatchments, whereas the 1% AEP rainfall plus snowmelt event produces the larger lake elevations and lake outflows due to the greater runoff volume in snowmelt events that overwhelms the lake storage capacities. Reach #6 is governed by the peak flows from the 1% AEP rainfall event rather than the snowmelt scenario since Sub-Catchment 1300 drains directly to the river reach without flow attenuation.

5.2.7 Reach #7: Potspoon Lake to 30 Island Lake

Reach #7 connects Potspoon Lake to Thirty Island Lake (see Figure 5-14). Potspoon Lake outlets to a channel that crosses Sperling Road. The hydrograph at Sperling Road is also representative of the outflows from Potspoon Lake given its proximity to the Potspoon Lake outlet (see Figure 5-15).

Downstream of Sperling Road, there are two smaller lakes that are modelled as storage areas. These two smaller lakes have different elevations, and the connection between the two is currently a beaver dam. The beaver dam is removed in the hydraulic model to allow the connection between the two lakes to be the natural constriction point at the downstream end of the upper reservoir (Connector Lake 7A). The lower reservoir (Connector Lake 7B) is connected to the 2D flow area that includes the creek channel that crosses McColl Lane and outlets to Thirty Island Lake. The stage hydrograph for Thirty Island Lake was applied as the downstream boundary condition for Reach #7.

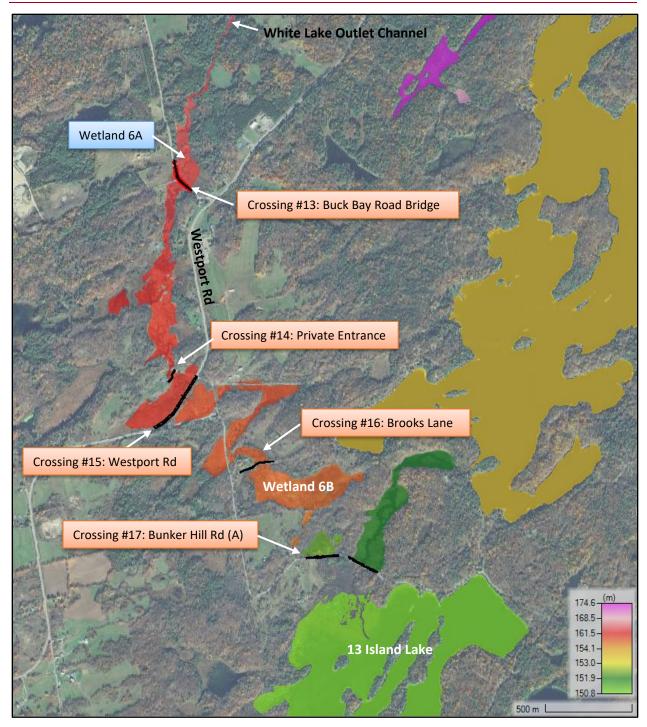


Figure 5-13: Reach #6 - White Lake to 13 Island Lake

Quinte Conservation & The Townships of South and Central Frontenac FHIMP ON22-46; Napanee River Upper Lakes Flood Hazard Mapping

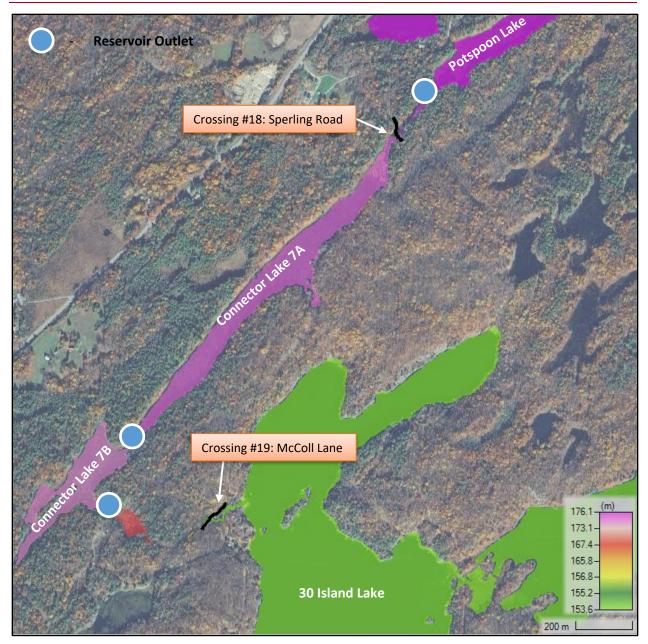


Figure 5-14: Reach #7

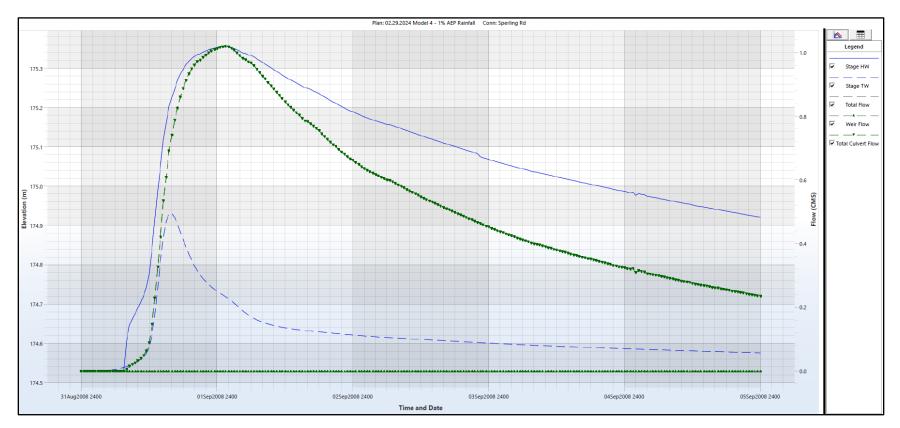


Figure 5-15: Stage and Flow Hydrograph for Sperling Road near Potspoon Lake Outlet; 1% AEP Snowmelt + Rain Event

5.2.8 Reach #8: 30 Island Lake to 13 Island Lake

Reach #8 represents the channel and two wetlands between Thirty Island Lake and Thirteen Island Lake.

The outlet from Thirty Island Lake is currently a beaver dam that was removed in the hydraulic model. There is a natural channel that is very narrow; within this narrow channel there is a private crossing that outlets to a well-defined wetland area. This wetland area had a shallow pool of water at the time of the field visit due to beaver activity between Wetlands 8A and 8B (see Figure 5-16). A local resident also noted that there is a steady flow of water from underneath the bedrock between Thirty Island Lake and Wetland 8A. The water daylights downstream of the private crossing, and may contribute to lower lake levels in 30 Island Lake during dry periods. The downstream connection for Wetland 8B is Bunker Hill Road B (Crossing #21). *Quinte Conservation & The Townships of South and Central Frontenac FHIMP ON22-46; Napanee River Upper Lakes Flood Hazard Mapping*

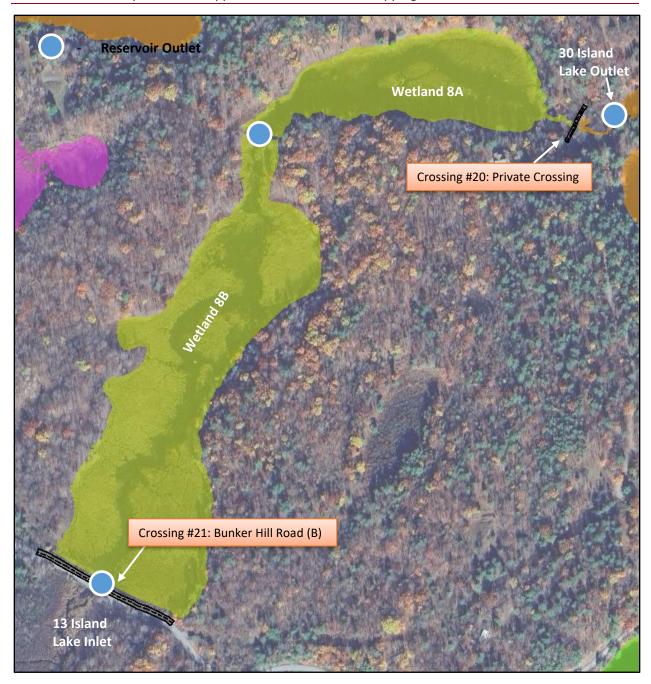


Figure 5-16: Reach #8

5.2.9 Reach #9: 13 Island Lake to Howes Lake

Reach #9 is predominantly a series of two smaller lakes that connect 13 Island Lake to Howes Lake (see Figure 5-17). This includes a connector lake with a longitudinal shape that outlets to Bass Lake. The two lakes were modelled as storage areas due to their size and subsequent storage capacities that would contribute to flow attenuation. They are connected by a narrow channel that was simulated as a storage area connection in the hydraulic model.

The outlet for Bass Lake is currently a beaver dam, however the beaver dam was removed in the hydraulic model and the culvert at Hinchinbrooke Road North is the outlet control for Bass Lake. On the downstream side of Bass Lake there is a steep drop off to Howes Lake. With the sudden drop in elevation, the water levels within Reach #9 are unaffected by the water levels in Howes Lake.

The stage and flow hydrograph for the Hinchinbrooke Road culvert control of Bass Lake is provided in Figure 5-18).

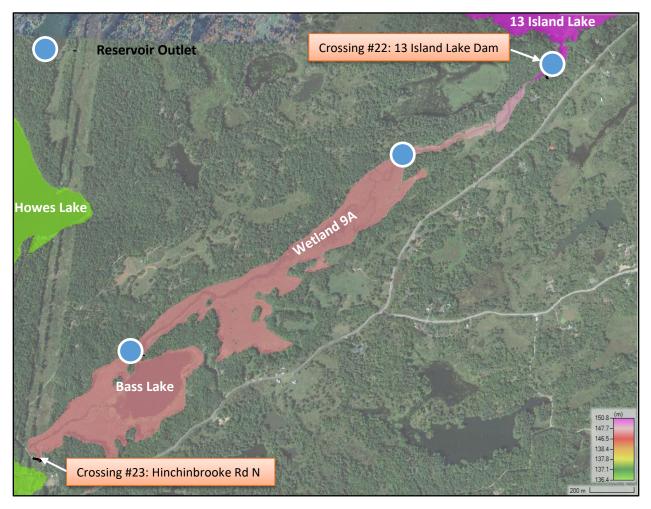


Figure 5-17: Reach #9

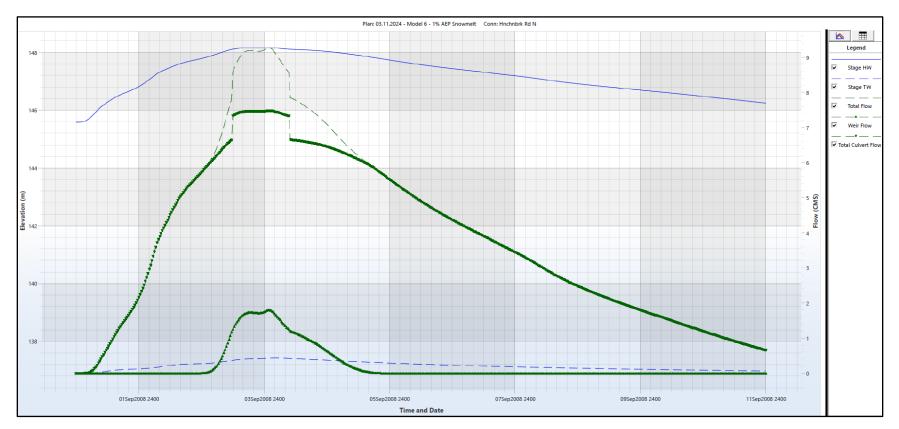


Figure 5-18: Hinchinbrooke Road North Stage and Flow Hydrograph Control of Bass Lake; 1% AEP Rainfall Plus Snowmelt Event

5.2.10 Reach #10: Fourteen Island Lake to Verona Lake

The upstream limit of Reach #10 is the Fourteen Island Lake dam outlet; the downstream limit of Reach #10 is the channel outlet to Verona Lake (see Figure 5-19). The Fourteen Island Lake Dam outlets to a short stretch of channel and wetland area before entering Spring Lake. Spring Lake is controlled by the culvert crossing at Hinchinbrooke Road and drains to Little Mud Lake. Little Mud Lake outlets at a constriction point into a short channel that inlets to Verona Lake. A stage hydrograph for Verona Lake is the downstream boundary condition for Reach #10.

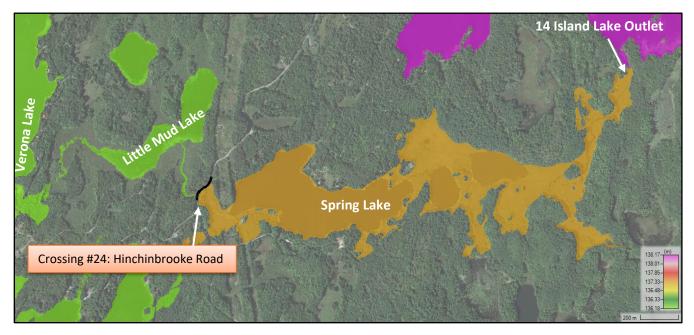


Figure 5-19: Reach #10; Depth Overlay

5.2.11 Reach #11: Verona Lake Outlet Channel to Hardwood Dam

Reach #11 is represented by the Verona Lake outlet channel that is controlled by the Hardwood Dam in summer conditions (see Figure 5-20). This is an important location in the hydraulic model because the reach inflows account for all upstream lake, reservoir, and channel routing. Section 4 concluded the flow attenuation in the lakes is a critical component of the Napanee River Upper Lakes system due to the amount of storage held within each of the main lakes. Since the lakes and their natural channel outlets can reduce peak inflow rates by factors up to 5 to 10 times (depending on the lake and outlet configuration), the outflow hydrographs at Hardwood Dam in the hydraulic model are of interest given that it accounts for backwater impacts, storage areas, and intermittent natural outlet controls throughout the eleven (11) river reaches described herein.

tardwood Damin

Figure 5-20 presents the outflow hydrograph at the Hardwood Dam for the 1% AEP spring melt event.

Figure 5-20: Reach #11

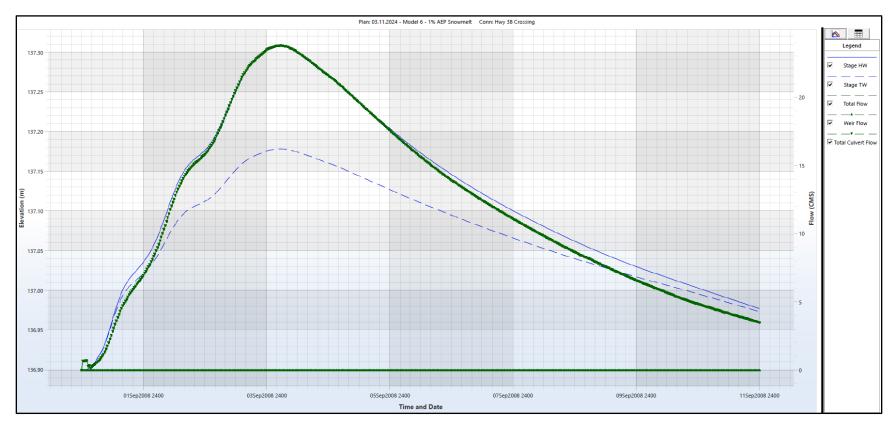


Figure 5-21: Highway 38 Stage and Flow Hydrograph; 1% AEP Rainfall Plus Snowmelt Event

5.3 Culvert & Bridge Crossings

There are twenty-six (26) crossings within the study area as previously depicted throughout Subsection 5.2. Tables 5-2 and 5-3 summarize the type of each crossing, its governing 1% AEP peak flow, and its corresponding headwater (HW) and tailwater (TW) elevations. The maximum relief flow depths are also included.

The governing peak flow and relief flow depth are based on the greater peak flow received from the 1% AEP rainfall or spring melt scenario since some crossings are less 'protected' by upstream flow attenuation than others. Recall that the rainfall-only events are more susceptible to flow attenuation by the lakes and intermittent wetlands relative to the snowmelt plus rain events. Therefore, crossings without upstream flow attenuation tend to receive greater peak flows from the 1% AEP rainfall only event, whereas the outflows for the main lakes and their immediate downstream crossings have greater peaks in the 1% AEP spring melt condition. The governing condition is included as a column in the tables below.

Some stage and flow hydrographs were presented within the discussion in Section 5.2; Appendix I provides the stage and flow hydrographs for each crossing. Culvert/bridge data sheets are provided in Appendix J.

Table 5-2: Summary of Crossings #1-12

Crossing #	Name	Туре	Low Point of Road (m)	Governing 1% AEP Event	Governing 1% AEP Q _{peak}	HW _{peak}	TW _{peak}	Δ H _{peak}	Max. Relief Flow Depth
				m	m³/s			m	
Reach 1: St Andro	ew Lakes Ln to Howes Lake								
1	St. Andrews Lakes Lane	Three (3) 750mm Φ HDPE culverts	170.59	Spring melt	1.9	170.85	170.85	0.00	0.26
2	K&P Trail	3m span x 1.5m rise concrete box culvert	171.13	Spring melt	1.9	170.84	170.77	0.07	0.00
3	Highway 38 near Cole Lake	3m span x 2.1m rise concrete box culvert	170.99	Spring melt	3.6	170.75	170.38	0.37	0.00
4	Private Crossing: 8985 B Hwy 38	Assumed 400mm diameter dirveway culvert	169.47	Spring melt	2.0	169.66	169.35	0.31	0.19
Reach 2: Cole La	ke to Howes Lake								
5	Hwy 38 near Godfrey	4m span x 2m rise concrete box culvert	153.52	Rainfall	11.7	154.65	152.94	1.71	1.13
6	K&P Trail near Godfrey	4m span bridge	154.28	Rainfall	11.7	152.74	152.66	0.08	0.00
7	Westport Road near Godfrey	3.2m span x 2.4m rise CSP arch culvert	151.66	Rainfall	20.6	152.47	152.11	0.36	0.81
8	Private Crossing: 7297 Hinchinbrooke Rd N	Assumed 400mm diameter dirveway culvert.	148.94	Rainfall	34.2	150.30	150.26	0.04	1.36
9	Craig Road	4.4m span x 2.9m rise CSP arch culvert	139.31	Rainfall	27.6	139.12	138.26	0.86	0.00
Reach 3: Van Luv	en Lake to Howes Lake								
10	Highway 38 near Howes Lake	3m span x 1.5m rise concrete box culvert	138.22	Spring melt	21.9	137.29	137.18	0.11	0.00
Reach 4: Howes	Lake to Verona Lake								
11	Desert Lake Road Bridge	10.0m span bridge	139.16	Spring melt	17.8	137.38	137.29	0.09	0.00
Reach 5: Hambly	Lake to Verona Outlet Channel								
12	Cedarwoods Lane	2.4m span concrete box culvert	137.20	Spring melt	2.2	137.31	137.29	0.02	0.11

Table 5-3: Summary of Crossings #13-26

Reach 6: W	/hite Lake to 13 Island Lake								
13	Buck Bay Road Bridge	9.1m span bridge	162.74	Rainfall	12.2	163.26	163.17	0.09	0.52
14	Private Crossing	Assumed 400mm diameter dirveway culvert	161.00	Rainfall	20.2	161.44	161.24	0.20	0.44
15	Westport Road near Glendower	1800mm Φ CSP culvert	160.68	Rainfall	21.9	161.14	160.13	1.01	0.46
16	Brooks Lane	1.4m x 1.2m CSP arch culvert	158.13	Rainfall	16.0	158.62	158.40	0.22	0.49
17	Bunker Hill Road A	1800mm Φ CSP culvert	152.22	Rainfall	14.4	152.68	152.14	0.54	0.46
Reach 7: P	otspoon Lake to 30 Island Lake								
18	Sperling Road	1600mm Φ CSP culvert	175.41	Rainfall	1.0	175.35	174.93	0.42	0.00
19	McColl Lane	Two 600mm Φ CSP culverts	154.59	Rainfall	3.7	155.17	155.16	0.01	0.58
Reach 8: 3	0 Island Lake to 13 Island Lake								
20	Private Crossing	Assumed 400mm diameter dirveway culvert	155.13	Spring melt	7.1	155.58	152.49	3.09	0.45
21	Bunker Hill Road B	1200mm Φ CSP culvert	151.84	Rainfall	0.1	151.56	151.56	0.00	0.00
Reach 9: 1	3 Island Lake to Howes Lake								
22	13 Island Lake Dam	Dam with three (3) stoplog bays	151.40	Spring melt	8.1	151.50	150.43	1.07	0.10
23	Hinchinbrooke Road North	1800mm Φ CSP culvert	147.76	Spring melt	9.3	148.16	137.42	10.74	0.40
Reach 10:	14 Island Lake to Verona Lake								
24	Hinchinbrooke Road	2400mm Φ CSP culvert	137.81	Spring melt	2.2	137.40	137.31	0.09	0.00
Reach 11:	Verona Lake Outlet Channel to Hardwood Dam								
26	Highway 38 near Verona	11.3m span bridge	138.29	Spring melt	2.1	137.42	137.42	0.00	0.00

6 Water Level Summary

The water levels are discussed in this section for the 0.5%, 1%, and 10% AEP events. The 0.5% AEP event is included as the climate change condition for the spring melt plus rain scenario. A separate scenario for climate change based on forecast temperature and rainfall increases is also included per Section 4.6.

The water levels summarized in this section primarily focus on the core Napanee River Upper Lakes; however, results for the governing 1% AEP event are also summarized for the sub-lakes and wetlands distributed throughout the study area. Recall that both the 1% AEP snowmelt plus rain, and rainfall only scenarios, were applied to determine the governing regulatory flood hazard limit for each reach.

6.1 Napanee River Upper Lakes Water Level Summary

The AEP Lake levels for both the rainfall and spring melt scenarios are presented in Table 6-1. Further to the 1% AEP regulatory flood limits, the 10% AEP and 0.5% events were simulated for the snowmelt plus rain scenario. The 1% AEP plus climate change scenario was also simulated as an individual model run.

Table 6-1 concludes that the Napanee River Upper Lakes water levels are governed by the spring melt condition as described in the *Section 3*. For Reaches 2 and 6, their channel and wetland areas are governed by the rainfall only condition.

There are several prominent beaver dams throughout the study area (see Figure 5-1). A model simulation was included to assess the potential impact of the beaver dams on the lake levels. The height of the beaver dams was based on LiDAR imagery and local survey data where available. A comparison of water levels for the 1% AEP snowmelt plus rain event with and without beaver dams is presented in Table 6-2. The beaver dams provide an increase in storage volume prior to their intended outlet controls becoming utilized. As a result, there is some reduction in water levels in the lower reaches if the beaver dams were to maintain structural stability in a large runoff event. On the other hand, the beaver dams result in an increase the water levels at their respective upstream lake or wetland area.

6.2 Comparison to 1981 Regulatory Water Levels

A comparison of lake level rise (i.e. maximum depth) between the 1981 study and the 2024 results is shown in Table 6-3. The primary differences between the previous and current mapping include 1) decades of 'new' flow gauge data at the Napanee River at Camden East, 2) the addition of the Schroeter model to investigate spring melt events, 3) a more detailed investigation of sub-lakes and wetlands, and 4) improved modeling software and data capabilities relative to historical modeling software.

An important observation was the water level measurement taken by Quinte Conservation on April 15 of 2014 at the Desert Lake Road bridge that connects Howes and Verona Lakes. This measurement occurred during a nearly 1% AEP peak flow at the Napanee Camden East gauge and provided excellent benchmark information to establish the tailwater condition and subsequent lake levels in the lower lakes (i.e. Hambly, Howes, Verona, Van Luven).

6.3 Sub-Lakes and Wetlands Water Level Summary

The sub-lakes and wetlands are the dominant characteristic among the river reaches between the thirteen main lakes of interest. The larger sub-lakes and wetlands were modeled using storage areas. Smaller sub-lakes and wetlands were modeled using 2D flow areas. A water level summary for the most prominent sub-lakes and wetlands is presented in Table 6-4. The names of each sub-lake and wetland in the table below correspond to the labels in the figures shown in Section 5.2 of this report.

	Outlat Inc.	10% AEP *W	/ater Level (m)	1% AEP *W	/ater Level (m)	Climate Change	*Water Level (m)
Lake	Outlet Inv. (m)	Rainfall	Rainfall + Snowmelt	Rainfall	Rainfall + Snowmelt	Rainfall (ECCC Method)	Rainfall + Snowmelt (0.5% AEP)
St. Andrews	170.20	170.51	170.73	170.68	170.85	170.84	170.90
Cole	168.90	168.98	169.14	169.11	169.25	169.19	169.27
Van Luven	136.20	136.63	137.11	137.03	137.37	137.43	137.45
Howes	135.50	136.60	137.10	137.03	137.36	137.17	137.44
White	168.25	168.40	168.59	168.51	168.71	168.60	168.75
Potspoon	175.91	176.09	176.19	176.18	176.27	176.26	176.30
30 Island	153.79	153.93	154.13	154.04	154.34	154.15	154.41
13 Island	150.43	150.34	150.70	150.48	150.83	150.62	150.89
Sigsworth	137.57	137.76	138.05	137.90	138.23	138.03	138.28
14 Island	137.57	137.76	138.05	137.90	138.23	138.03	138.28
Hambly	135.48	136.56	137.05	136.98	137.29	137.03	137.36
Verona	135.47	136.55	137.04	136.97	137.27	137.03	137.34
Little John	146.30	146.54	146.70	146.73	146.78	146.90	146.80
*Water levels in	datum CGVD 2	2013					

Table 6-1: Water Level Summary for 10% AEP, 1% AEP, 0.5% AEP, and Climate Change Scenarios

	Outlat Inc.	2% AEP *W	ater Level (m)	5% AEP *W	/ater Level (m)	50% AEP *W	/ater Level (m)
Lake	Outlet Inv. (m)	Rainfall	Rainfall + Snowmelt	Rainfall	Rainfall + Snowmelt	Rainfall	Rainfall + Snowmelt
St. Andrews	170.20	170.63	170.81	170.56	170.76	170.38	170.63
Cole	168.90	169.08	169.22	169.04	169.19	168.96	169.08
Van Luven	136.20	136.90	137.33	136.74	137.21	136.34	136.82
Howes	135.50	136.90	137.31	136.73	137.20	136.09	136.81
White	168.25	168.48	168.67	168.44	168.62	168.32	168.49
Potspoon	175.91	176.15	176.25	176.12	176.21	176.04	176.12
30 Island	153.79	154.01	154.28	153.89	154.20	153.86	154.01
13 Island	150.43	150.44	150.77	150.38	150.69	150.26	150.49
Sigsworth	137.57	137.86	138.18	137.80	138.10	137.66	137.89
14 Island	137.57	137.86	138.18	137.80	138.10	137.66	137.89
Hambly	135.48	136.85	137.25	136.69	137.15	136.12	136.77
Verona	135.47	136.85	137.23	136.69	137.13	136.04	136.77
Little John	146.30	146.67	146.76	146.59	146.72	146.39	146.62
*Water levels in	datum CGVD 2	2013					

Table 6-2: Water Level Summary for 2% AEP, 5% AEP, and 50% AEP Scenarios

Lake	Without Beaver Dams	With Beaver Dams
St. Andrews	170.85	170.85
Cole	169.25	169.42
Van Luven	137.37	137.38
Howes	137.36	137.35
White	168.71	168.91
Potspoon	176.27	176.27
30 Island	154.34	154.41
13 Island	150.83	150.81
Sigsworth	138.23	138.23
14 Island	138.23	138.23
Hambly	137.29	137.29
Verona	137.27	137.27
Little John	146.78	146.78

Table 6-3: Comparison of 1% AEP Lake Levels With and Without Beaver Dams

Table 6-4: Comparison of Maximum Lake Flood Depths (m) Between 1981 and 2024 Output Results

Lake	Starting	1%	AEP Rainf	all	1% A	EP Spring	g Melt
Lake	Elevation (m)	1981	2024	Diff.	1981	2024	Diff.
*Howes	135.64	0.76	1.40	0.64	1.31	1.73	0.42
*Van Luven	136.20	0.76	1.01	0.25	1.31	1.35	0.04
*Hambly	135.64	0.76	1.35	0.59	1.31	1.66	0.35
*Verona	135.64	0.76	1.34	0.58	1.31	1.64	0.33
Fourteen Island	137.58	0.31	0.35	0.04	0.63	0.68	0.05
Thirteen Island	150.43	0.31	0.35	0.04	1.27	0.70	(0.57)
Thirty Island	153.80	0.22	1.10	0.88	0.76	1.40	0.64
Potspoon	175.92	0.16	0.22	0.06	0.48	0.31	(0.17)
White	167.99	0.12	0.16	0.04	0.28	0.36	0.08

*Depths measured above 2024 Hardwood Dam outlet for consistency with 1981 comparison.

Sub-Lake / Wetland #	Governing 1% AEP Event	Starting Elevation	1% AEP Elevation	Max. Depth
Reach 1: St An	drew Lakes Ln to H	lowes Lake		
14	Spring melt	170.38	170.85	0.47
18	Spring melt	169.78	170.76	0.98
1C	Spring melt	169.48	169.70	0.22
Reach 2: Cole I	ake to Howes Lake	e		
2A	Rainfall	152.20	154.65	2.45
2B	Rainfall	150.80	151.87	1.07
2C	Rainfall	147.20	148.53	1.33
Reach 3: Van L	uven Lake to How	es Lake		
		N/A		
Reach 4: Howe	es Lake to Verona L	ake		
		N/A		
Reach 5: Hamb	oly Lake to Verona	Outlet Channe	l	
		N/A		
Reach 6: White	e Lake to 13 Island	Lake		
6A	Rainfall	162.60	163.30	0.70
6B	Rainfall	157.68	158.12	0.44
	oon Lake to 30 Isla			
7A	Rainfall	174.53	174.93	0.40
7B	Rainfall	173.85	174.46	0.61
	and Lake to 13 Isla		454.05	0.42
8A	Springmelt	151.53	151.95	0.42
8B	Spring melt	150.90	151.95	0.05
	and Lake to Howes			0.64
9A	Spring melt	146.92	147.56	0.64
9B	Spring melt Iand Lake to Veror	145.57	147.55	1.98
10A	Spring melt	136.10	137.64	1.54
10A 10B	Spring melt	136.28	137.04	1.01
	ona Lake Outlet Ch			1.01
	and conter en	N/A		

Table 6-5: Sub-Lakes and Wetlands 1% AEP Water Level Summary

7 Sensitivity Analysis

Flood hazard limits are derived from the runoff rates supplied to the hydraulic model. It is important to assess the sensitivity of the selected peak flows to their input parameters to understand the potential variance in peak flows due to uncertainties in the modeling input. Uncertainties are inherent in all scientific modeling programs, and individual models can be used responsibly when the user understands the limitations and potential factors that can influence the model output.

Figures 7-1 to 7-3 illustrate the parameters with the greatest sensitivity impact on the HEC-HMS flows. These parameters include CN, lag time, and rainfall depth. The CN affects the losses, and unsurprisingly has a significant influence on the peak runoff. The lag time has the least impact of the three, but still has sensitivity impacts on the model results. The lag time has less influence than usual since the reservoir routing governs in the timing of the peak outflows throughout the Napanee River Upper Lakes drainage system. The rainfall volume is of particular interest. It is evident that there is an appreciable increase in peak flows with an increase in the rainfall volume. Since climate change considerations include increasing the rainfall depth by 25%, the increase in the peak runoff rate is significant (see further discussion in Section 4.6).

Given the sensitivity of the HEC-HMS results to the rainfall depths, it is important to consider the data being supplied to the input hyetographs. As discussed in Section 4.2, the Kingston station has a long historical data record (recall that the Kingston station has a greater depth than the Hartington 1%, 1-day AEP rainfall depth and is expected to be a conservative input into the hydrologic model).

With the hydraulic model, there is a sensitivity check for the Manning's roughness values. Since the majority of the study area is comprised of lakes, wetlands, and low velocity areas, the hydraulic model has minimal sensitivity to the Manning's n values. The low, medium, and high Manning's n values used in the sensitivity analysis are summarized in Table 7-1. A model run was completed to compare the water levels with the high and low Manning's values. The water levels showed minimal sensitivity, with several lakes showing no change and the maximum change in elevation being 2cm. Evidently, the Napanee River Upper Lakes and their sub-reaches have minimal sensitivity to the Manning's roughness value considering that the vast majority of the study area is dominated by storage areas.

8 Public Information Center

A public information center (PIC) was held from 5:30pm to 7:00pm on February 6, 2024 at the Sydenham Public Library. The PIC included display boards for each of the draft floodplain maps, and a PowerPoint presentation was available. The PIC was hosted by Quinte Conservation staff along with the project engineers from Jewell Engineering. No major concerns were brought forward by the public and the project proceeded to finalization following the PIC.

Land Cover	Low	Medium	High
Swamp	0.035	0.045	0.06
Clear open water	0.028	0.032	0.035
Community infrastructure	0.035	0.05	0.12
Tree upland	0.05	0.07	0.09
Marsh	0.035	0.045	0.06
Deciduous treed	0.05	0.07	0.09
Mixed treed	0.05	0.07	0.09
Coniferous treed	0.05	0.07	0.09
Agriculture and undifferentiated rural	0.035	0.05	0.07
Plantations - treed cultivated	0.035	0.05	0.07
Hedge rows	0.04	0.05	0.07
Sand gravel mine tailings extraction	0.017	0.025	0.033

Table 8-1: Manning's n Values Applied in Hydraulic Model Sensitivity Tests

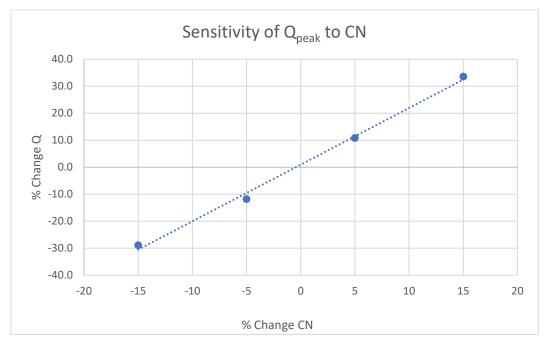
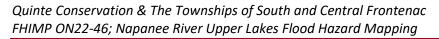



Figure 8-1: Sensitivity of Peak Runoff Rates to CN

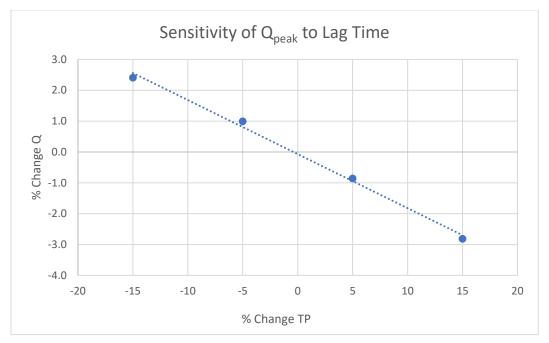


Figure 8-2: Sensitivity of Peak Runoff Rates to Lag Time

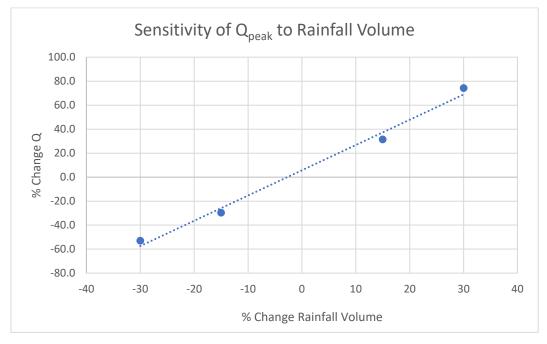
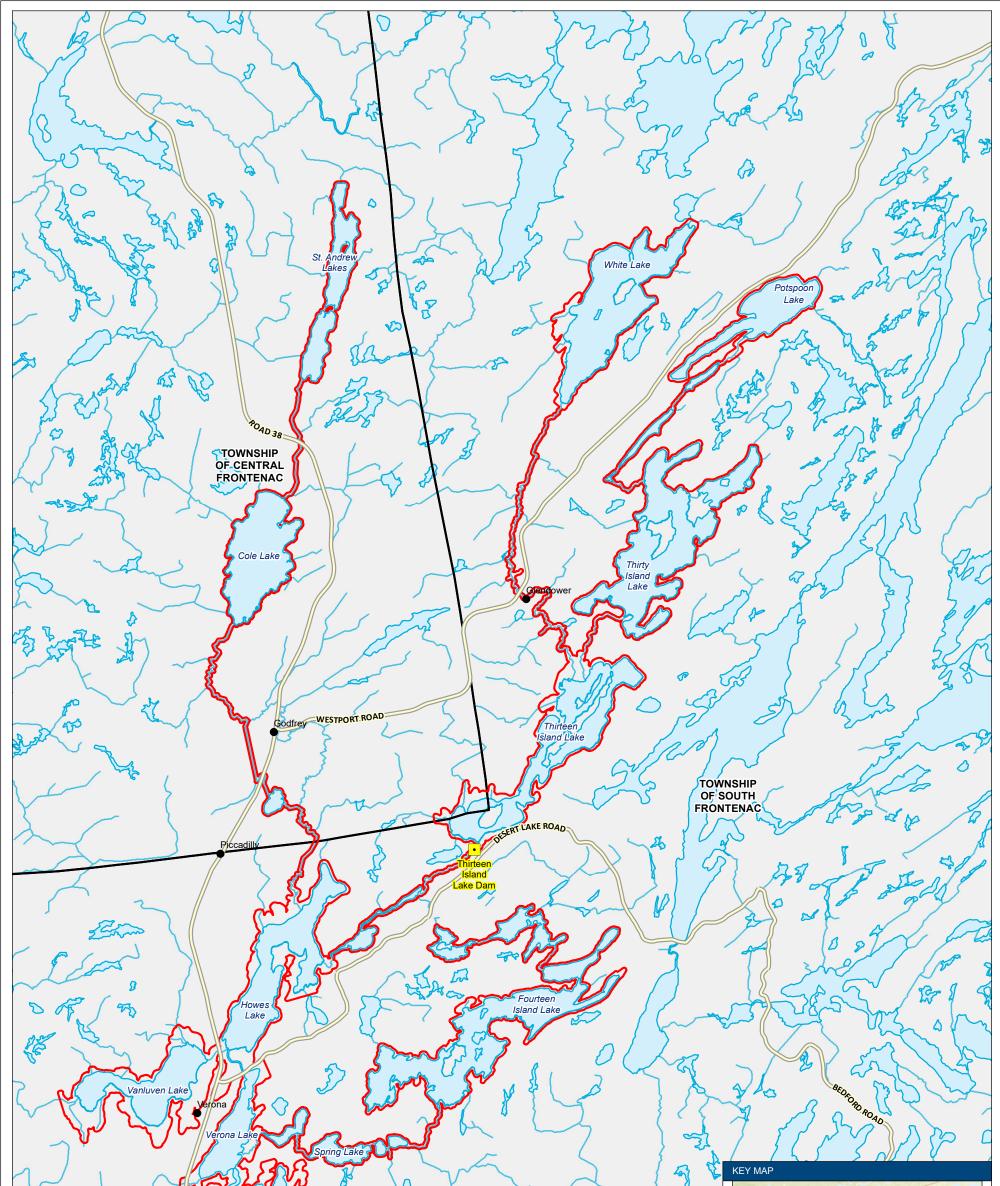


Figure 8-3: Sensitivity of Peak Runoff Rates to Rainfall Volume

Prepared by:

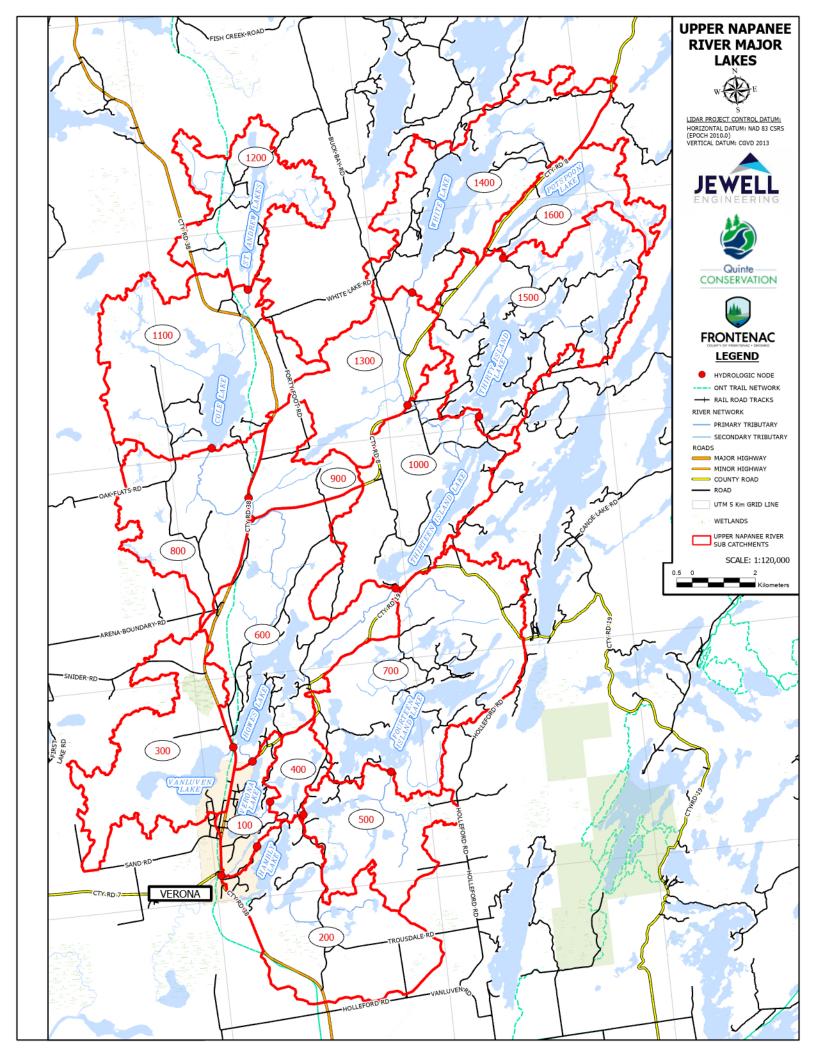
Elliott Fledderus, P.Eng. Jewell Engineering Inc.

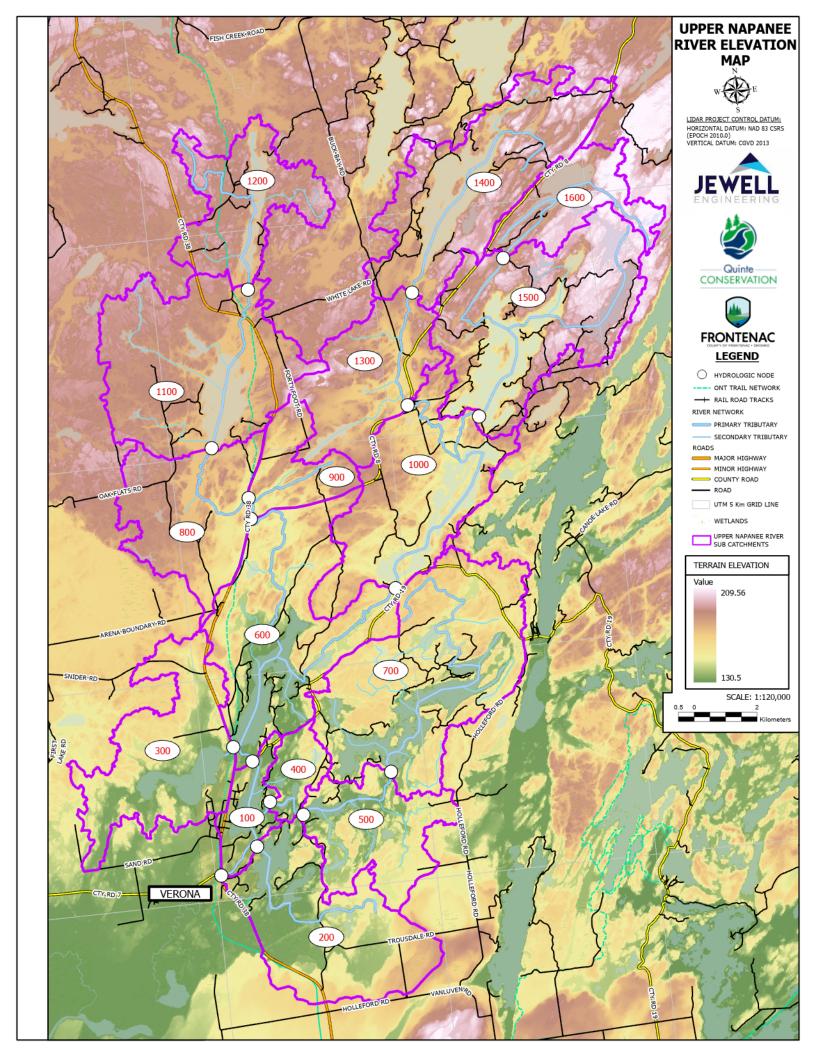

Bryon Keene, P.Eng. Jewell Engineering Inc.

9 References

- Bartles, M., Tom, B., Ho, D., Fleming, M., Karlovits, G., Pak, J., . . . Willis, J. (2022). *HEC-HMS User's Manual*. Retrieved from https://www.hec.usace.army.mil/software/hec-hms/documentation/HEC-HMS_User's_Manual-v4.11-20231018.pdf
- Brunner, G. (2023). *HEC-RAS User's Manual*. Retrieved from https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS%20User's%20Manual-v6.4.1.pdf
- Environment and Climate Change Canada. (n.d.). IDF Data and Climate Change. Retrieved from https://climatedata.ca/resource/idf-data-and-climate-change/
- (Ministry of Natural Resources). Floodplain Management in Ontario Technical Guidelines.
- (2016). HEC-SSP Statistical Software Pacakage User's Manual. US Army Corps of Engineers.
- Ministry of Natural Resources and Forestry. (2020). User Guide for Ontario Flow Assessment Tool (OFAT).
- Ministry of Transportation Ontario. (1997). Drainage Management Manual.
- Ministry of Transportation Ontario. (2008). Highway Drainage Design Standards.
- Natural Resources Canada. (2018). Federal Flood Mapping Framework. Government of Canada.
- Natural Resources Canada. (2023). *Federal Hydrologic and Hydraulic Procedures for Flood Hazard Delineation*. Natural Resources Canada.

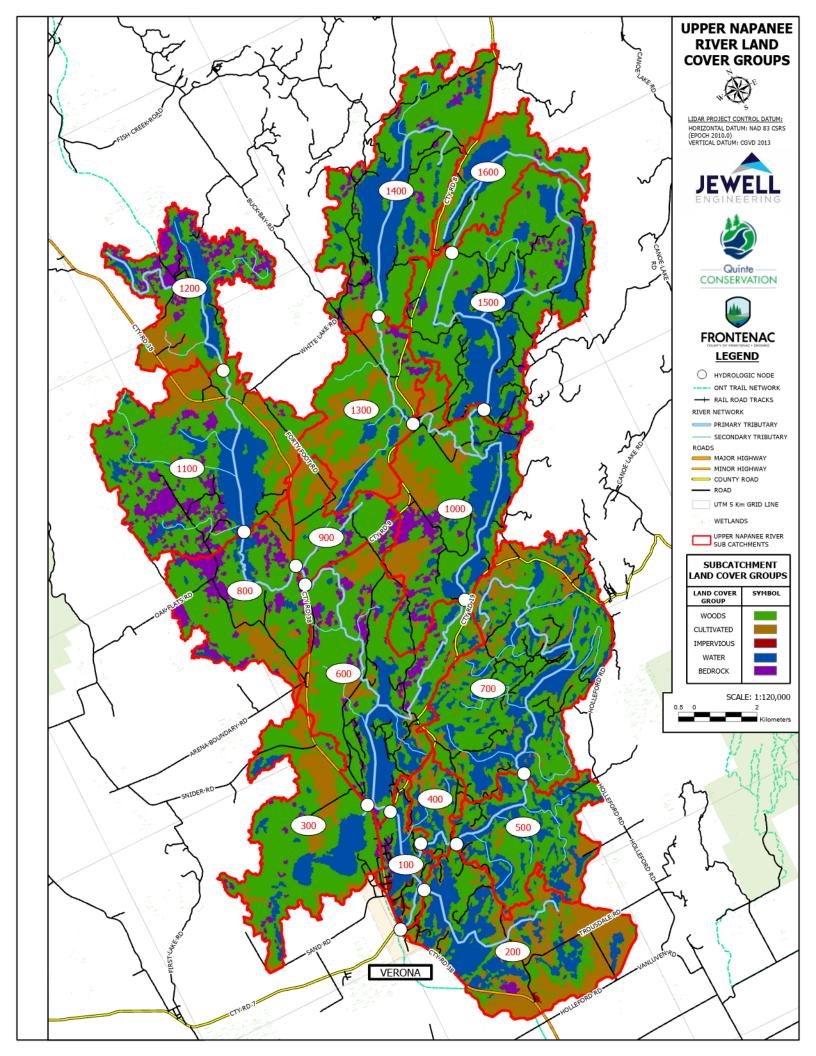
Appendix A-1: Quinte Conservation – Napanee River Upper Lakes FHIMP Study Area

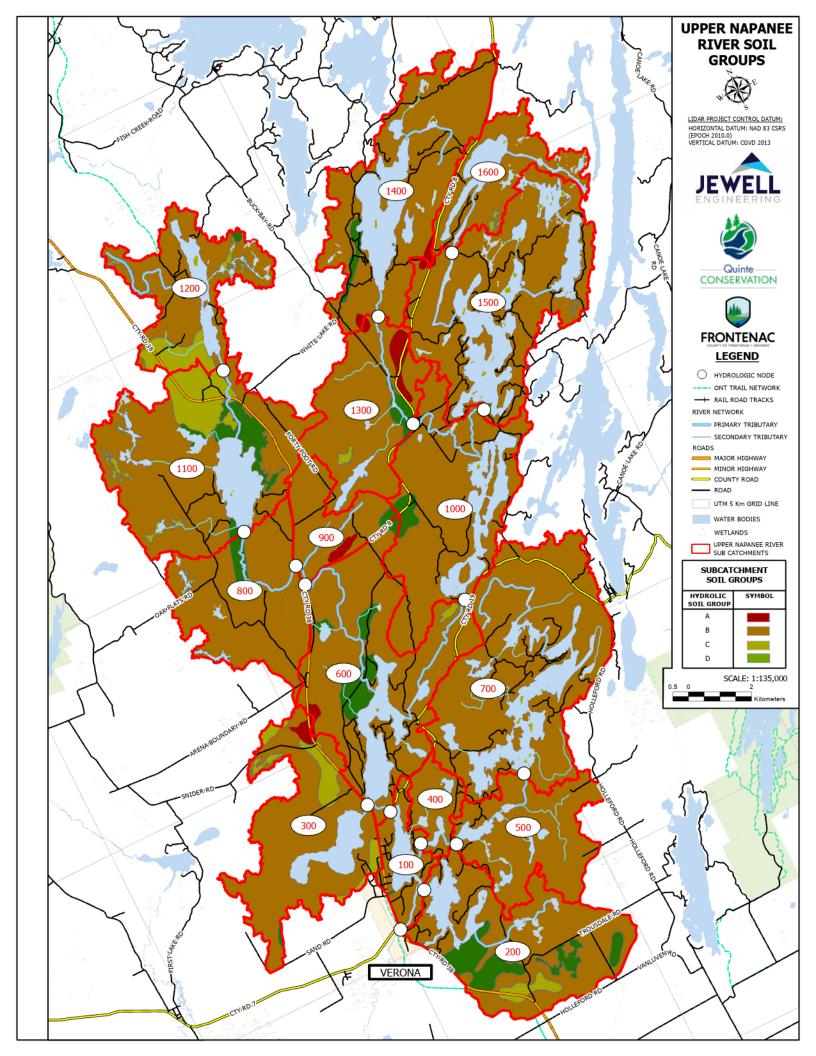




BELLROCK ROAD	• Hardwood Creek Dam	hbly Lake			A see	Honetes
	DEPARTMENT:					LEGEND / NOTES
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ater Resources				Application Area
	TITLE: FHIN Upp	P Application Area er Napanee River				Lower/Single-Tier Municipality     Population Centre
	SCALE: 1:60,00	Draduard by Ovinte Concernation 2023 04 25 under license with the	03	Area extension	25/04/23	Waterbody Watercourse
Quinte	SHEET: 1 of	Produced by Quite Contervation 22.52-9425 table microse with the Ontation Ministry On Natural Resources. Copyright Quited Conservation and the Queer's Printer for Ontatio, 2023. Data is projected in NMD 53 UTM Zone 18N. 1 Digital Mapping Sources: Base May - Ontatio Ministry of Natural Resources Imagery - 2008 Copyright C of Alex-Printol (1981) Inc. - All Right Reserved	02	Area extension	23/02/23	Water Control Structure
	DRAWING: C.D	<ul> <li>Imagery - DRAPE 2019 Ontario Ministry of Natural Resources</li> <li>Imagery - SCOOP 2018 Ontario Ministry of Natural Resources Key Map - ArcGIS Online Services</li> <li>Disclaimer</li> </ul>	01	Draft for comment / review	02/09/22	0 500 1.000 2.000
	CHECK: C.F	This map is for illustrative purposes only. Quinte Conservation	No.	REVISION	DD/MM/YY	d 300 2000 Metres
Path: E:\Projects\WR\FHIMP\2023\Upper Napanee River - U	Ipdate.mxd Original Docu	ment: 11 x 17 in				

Appendix B-2: Sub-Catchment Areas and Descriptions






Appendix B: Soil and Land Cover Maps







# Appendix C-1: Hartington Snowmelt + Rainfall MSC Frequency Values



#### METEOROLOGICAL SERVICE OF CANADA RAIN+SNOWMELT DEPTH, DURATION, FREQUENCY VALUES PREPARED BY THE ENGINEERING CLIMATE SERVICES UNIT

STATION : HARTINGTON IHD

STATION NUMBER 6103367

NOTE : MODIFIED GUMBEL 12/82

LATITUDE: 44.43N LONGITUDE: 76.69W ELEVATION (M): 160

ARCHIVE: DLY04 (15/12/1967 - 31/12/2006) DLY44 (01/01/2007 - 22/01/2016)

SNOWMELT MODEL 1 - Eastern Canada Forested Basin

CRITICAL PERIOD : 1ST OF MONTH 10 (PRECEDING YEAR) TO THE END OF MONTH 6

TOTAL % START MAX YR DAYS VALID FLAG MAX 1 DAY 2 DAY 3 DAY 4 DAY 5 DAY 6 DAY 7 DAY 8 DAY 9 DAY 10 DAY 15 DAY 20 DAY 25 DAY 30 DAY SNPK 1968 198 72 ** M/D 2/ 2 2/1 2/1 1/301/291/281/281/281/283/10 3/9 1/141/141/14.1MM 297 468 468 492 586 591 591 591 591 627 721 871 871 871 1969 273 100 M/D 11/281/23 1/22 1/22 1/22 11/28 11/28 1/231/22 1/22 1/181/181/181/18 925 .1MM 310 332 392 392 392 475 539 643 703 732 871 925 925 547 89 ** 3/4 1970 242 M/D 12/1012/1012/1012/ 9 3/22 3/21 3/20 3/19 3/19 3/19 3/20 3/18 3/13 842 1139 1250 1309 340 416 465 510 556 645 764 814 867 1246 .1MM 1971 273 4/19 4/15 4/7 4/ 2 3/29 3/29 100 M/D 4/12 4/18 4/184/17 4/164/12 4/12 4/12 225 828 1038 1994 2212 2212 .1MM 422 580 729 953 1171 1361 1509 1828 2098 1972 274 100 M/D 2/132/13 2/13 4/11 4/104/9 4/9 4/9 4/9 4/9 3/31 3/29 3/21 3/16 .1MM 302 381 449 517 572 611 611 611 611 611 887 1032 1337 1556 852 1973 273 100 12/312/ 1 1/161/151/151/1412/30 M/D 1/171/171/171/161/151/141/14.1MM 288 318 424 484 519 583 665 725 759 784 878 1201 1257 1320 696 1974 273 100 M/D 4/ 3 1/26 4/1 3/31 3/30 3/29 3/29 3/29 1/201/201/181/181/201/181090 .1MM 301 385 541 646 801 847 847 847 864 919 1040 1040 1085 628 1975 273 100 M/D 3/19 3/18 3/17 3/17 3/16 3/16 3/13 3/12 3/12 3/12 3/6 2/162/23 2/18 .1MM 421 562 622 652 681 681 710 752 782 782 827 847 1269 1525 504 1976 274 M/D 12/143/24 3/24 3/24 3/23 3/20 3/20 3/20 3/19 3/19 3/13 2/15 2/10 2/27 100 .1MM 249 433 568 747 809 944 1123 1218 1218 1251 1517 1727 1847 777 1157 1977 273 100 M/D 3/12 3/11 3/10 3/9 3/8 3/7 3/ 6 3/5 3/4 3/ 3 2/26 2/24 3/4 2/11.1MM 362 542 723 863 887 937 1006 1112 1389 1402 1560 1820 1874 2024 1275 1978 273 100 M/D 1/241/24 4/114/11 4/10 4/9 4/7 4/6 4/6 4/4 3/31 3/27 3/20 3/14 .1MM 495 495 610 710 734 763 816 941 1041 1177 1614 2053 2354 2512 1664 1979 273 100 M/D 12/31 12/31 12/30 12/303/1 3/3 3/3 3/ 1 3/ 1 2/282/232/21 2/21 2/21 971 .1MM 282 535 575 575 646 719 816 874 993 1237 1381 1381 1381 733 2/21 1980 274 100 M/D 3/21 3/20 3/19 3/18 3/17 3/17 3/17 3/17 3/17 3/17 3/10 3/ 5 3/ 5 797 529 678 678 718 .1MM 349 546 600 678 678 678 678 726 726 356 1981 273 100 M/D 2/19 2/18 2/172/16 2/152/152/15 2/152/112/10 2/8 2/ 1 1/261/26.1MM 409 590 712 860 863 863 863 863 988 1230 1239 1309 1474 1474 565 1982 273 M/D 3/25 3/12 3/11 3/11 3/11 3/11 3/19 3/18 3/11 3/11 3/11 3/11 3/11 3/11 100 .1MM 233 313 402 460 491 508 595 621 691 772 1197 1197 1197 1197 810 1983 273 100 M/D 12/1512/14 12/14 4/20 4/20 4/20 4/20 4/20 4/20 12/1512/1411/28 11/2811/28 347 392 470 470 .1MM 191 236 236 251 251 251 251 251 251 626 168 274 M/D 2/142/13 2/12 2/11 2/112/112/11 2/11 2/11 12/ 5 2/ 2 2/ 2 1/2411/151984 100 .1MM 487 689 760 893 944 944 944 944 944 979 1197 1197 1319 1371 565 2/21 2/21 2/131985 273 100 M/D 2/23 2/22 2/22 2/21 2/21 2/21 2/22 2/21 2/21 2/22 2/22

				.1MM	410	674	796	886	939	979	979	998	1088	1168	1168	1803	1933	1991	865
1986	273	100		M/D	1/19	1/19	1/18	1/17	1/17	1/17	3/13	3/13	3/11	3/10	3/11	3/10	3/2	3/2	700
1987	273	100		.1MM M/D	290 3/ 1	453 2/28	573 2/28	637 2/28	663 2/28	708 2/28	752 2/28	752 3/ 1	819 2/28	913 2/28	1075 2/23	1168 2/28	1251 2/23	1251 2/7	798
1907	275	100		.1MM	257	377	422	422	422	448	483	638	758	758	789	800	831	842	465
1988	274	100		M/D	11/28	11/28	11/28	11/26	11/26	11/26	11/26	11/26	11/26	11/26	11/26	3/7	11/28	11/26	
				.1MM	380	705	705	740	740	740	740	740	740	740	783	1059	1088	1123	634
1989	273	100		M/D	3/27	3/26	3/25	3/24	3/24	3/24	3/24	3/24	3/24	3/24	3/14	3/14	3/4	3/4	510
1990	273	100		.1MM M/D	212 2/22	325 1/17	414 1/17	528 1/17	579 1/17	579 1/17	579 1/17	579 1/17	579 1/17	579 1/17	839 1/17	839 1/8	899 1/3	899 12/31	510
1990	275	100		.1MM	331	444	444	444	444	444	520	640	779	824	914	1054	1212	1362	540
1991	273	100		M/D	12/29	12/29	12/29	2/3	2/3	3/1	3/1	3/1	3/1	3/1	2/20	2/18	2/18	2/3	5.0
				.1MM	390	390	390	394	394	498	498	498	498	498	712	854	864	1048	374
1992	274	100		M/D	3/26	3/26	3/25	3/25	3/6	3/26	3/25	3/25	3/25	3/25	3/25	3/7	3/6	3/5	
1000	272	100		.1MM	373	486	579	582	663	736	829	910	925	925	925	1010	1389	1610	413
1993	273	100		M/D .1MM	3/28 195	3/28 375	3/27 501	3/26 582	3/25 672	3/24 762	3/24 821	3/24 821	3/22 866	3/21 915	3/21 1117	3/21 1158	3/16 1195	3/ 7 1368	891
1994	272	100		M/D	2/20	2/19	3/22	3/21	3/21	3/21	3/21	3/21	3/21	3/21	3/19	3/13	3/7	3/5	091
1))4	212	100		.1MM	209	326	423	538	578	618	654	735	806	864	992	1159	1258	1283	906
1995	273	100		M/D	1/14	1/13	1/12	1/12	1/12	1/12	1/12	3/6	3/5	3/5	3/5	1/12	2/18	$\frac{12}{16}$	200
				.1MM	267	418	486	486	486	486	486	501	541	541	541	546	670	806	246
1996	274	100		M/D	2/20	2/20	1/16	2/20	2/20	2/19	2/19	2/19	1/16	1/16	1/14	1/14	1/16	1/14	
1007	272	100		.1MM	349	463	529	690	763	781	781	781	856	856	1088	1088	1306	1387	591
1997	273	100		M/D .1MM	3/25 278	2/20 403	2/19 570	3/25 637	3/25 830	3/25 915	3/25 950	3/25 1008	3/25 1008	3/25 1008	3/20 1021	3/14 1044	3/10 1092	3/ 1 1232	646
1998	273	100		M/D	2/8 1/5	405 1/5	2/17	2/17	2/17	2/17	2/17	2/17	2/12	2/11	2/10	2/2	$\frac{1092}{2/1}$	1/24	040
1990	275	100		.1MM	206	242	282	344	383	383	383	383	420	465	507	564	577	587	335
1999	273	100		M/D	1/23	1/22	1/22	1/17	1/19	1/18	1/17	1/17	1/17	1/17	1/17	1/17	1/17	1/17	
				.1MM	217	293	337	372	417	584	696	741	741	741	741	1021	1092	1092	585
2000	274	100		M/D	2/24	2/23	2/23	2/24	2/23	2/22	2/22	2/22	2/22	2/22	2/22	2/22	2/22	2/16	
2001	272	100		.1MM	298	425	503	659	786	821	821	821	821	821	849	880	1060	1068	594
2001	273	100		M/D .1MM	2/9 425	12/16 503	4/4 517	4/3 625	4/ 3 719	4/2 805	4/ 1 844	3/31 884	3/30 935	3/29 979	3/23 1068	3/19 1478	3/14 1656	3/10 1744	1338
2002	273	100		M/D	3/2	2/20	2/19	3/27	2/20	2/16	2/15	2/15	2/15	2/15	2/16	$\frac{1478}{2/15}$	2/10	2/10	1220
2002	275	100		.1MM	246	301	321	326	327	406	496	496	496	522	763	853	924	994	325
2003	273	100		M/D	3/20	3/20	3/20	3/20	3/20	3/20	3/17	3/17	3/17	3/16	3/12	3/ 8	3/17	3/12	
				.1MM	272	469	613	748	869	1025	1062	1184	1340	1429	1486	1508	1563	1709	1169
2004	274	100		M/D	3/ 5	3/4	3/3	3/ 2	3/1	3/ 1	2/29	2/28	2/28	2/28	2/28	2/21	2/19	2/19	0.44
2005	273	100		.1MM M/D	277 12/23	405 2/14	513 2/14	653 2/12	802 2/12	883 2/12	955 2/12	1004 2/ 8	1016 2/ 7	1033 2/ 6	1189 2/4	1215 2/4	1297 12/22	1317 12/16	841
2005	275	100		.1MM	207	333	333	359	359	359	359	472	616	633	637	637	801	837	301
2006	273	100		M/D	11/29	11/28	11/27	11/27	11/27	11/27	11/27	11/27	11/27	11/27	11/27	11/27	11/27	11/27	502
				.1MM	482	717	780	780	780	780	780	780	780	780	780	780	780	1070	290
2007	273	100		M/D	3/13	3/13	3/12	3/11	3/10	3/10	3/10	3/10	3/10	3/10	3/ 1	3/3	3/ 1	2/22	
2000	274	100		.1MM	144	273	353	443	470	470	470	470	470	470	592	612	668	676	486
2008	274	100		M/D .1MM	12/23 435	12/22 488	1/ 6 510	1/ 5 556	3/31 613	12/23 667	12/23 730	12/22 783	12/22 783	3/26 818	12/23 906	12/22 1353	3/12 1400	3/ 7 1445	1017
2009	273	100		M/D	2/11	2/11	2/10	2/10	12/24	12/24	12/24	12/24	12/24	12/24	12/14	1333 $12/14$	2/11	2/10	1017
2005	275	100		.1MM	326	497	519	519	637	705	705	705	705	705	941	1009	1203	1413	681
2010	273	100		M/D	12/26	12/25	12/25	12/25	12/25	12/25	12/25	12/25	12/25	12/25	12/13	12/13	12/25	12/25	
				.1MM	159	276	330	338	338	338	351	404	404	404	456	530	623	623	219
2011	226	83	**	M/D	3/10	3/10	3/10	3/10	3/10	3/ 5	3/5	3/10	3/10	3/10	3/ 5	3/ 5	2/27	2/18	
2012	274	100		.1MM	421	544	602	665	696	744	867	1034	1224	1264	1587	1751	1923	1934	
2012	2/4	TOO		M/D	1/17	1/23	1/23	1/23	1/23	1/23	1/23	1/17	1/23	1/23	1/17	1/13	1/12	1/ 6	

.1MM 2013 273 100 M/D .1MM 2014 273 100 M/D .1MM 2015 273 100 M/D .1MM 2016 114 42 ** M/D .1MM	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3/8       3/7         575       629         2/19       2/19         639       647         2       4/1       3/30         7       464       518         1       12/29       12/29       1         3       134       134	297         305         32           3/6         3/6         3/           673         673         67           2/19         3/29         3/2           647         703         86           3/30         3/30         3/1           580         580         66           12/29         12/29         12/2           134         134         13	6       1/6       1/6         73       682       682         28       3/28       3/28         59       889       889         10       3/9       3/25         36       650       670         29       12/29       12/29         34       134       134	5536196497041302/251/111/61/6908989112211224803/213/193/113/89531167137914939813/213/163/103/980497513471454110912/2012/2012/2012/20141141141141
MEAN EXTREME (MM)	1 DAY 2 DAY 3 DA		5 DAY 7 DAY 8 DA 66.1 69.6 74.	-	15 DAY 20 DAY 25 DAY 30 DAY 95.2 107.7 119.4 127.6
STD. DEV. (MM) YEARS ANALYSED MAX EXTREME (MM) YEAR	9.2 12.6 14.2 45 45 45 49.5 71.7 79.0 1978 2006 198	2 16.6 18.7 5 45 45 5 89.3 94.4 1	19.7 20.5 22.	.2 25.4 27.2 45 45 45 .4 138.9 150.9	30.5       37.4       41.3       43.0         45       45       45       45         182.8       205.3       235.4       251.2         1971       1978       1978       1978
** NOTE ** VALUE IN FLA	G INDICATES YEAR NOT	INCLUDED IN ANALY	/SIS BASED ON % DA	AYS OPERATIONAL (	<90.0%)
STATION : HARTINGTON IHD	RAIN+SNOWI PREPARED B	TEOROLOGICAL SERVI MELT DEPTH, DURATI Y THE ENGINEERING ************************************	ION, FREQUENCY VAL CLIMATE SERVICES	UNIT	**************************************
ARCHIVE: DLY04 (15/12/196 SNOWMELT MODEL 1 - Easter		·	2/01/2016)		
	n Canada Forested Ba	sin	,		NOTE : MODIFIED GUMBEL 12/82
SNOWMELT MODEL 1 - Easter CRITICAL PERIOD : 1ST OF	n Canada Forested Ba MONTH 10 (PRECEDING RETURI	sin YEAR) TO THE END N PERIOD VALUES (	OF MONTH 6 (MM) WITH 50% CON	NFIDENCE LIMITS *****	NOTE : MODIFIED GUMBEL 12/82
SNOWMELT MODEL 1 - Easter CRITICAL PERIOD : 1ST OF	n Canada Forested Ba MONTH 10 (PRECEDING RETURI	sin YEAR) TO THE END N PERIOD VALUES (	OF MONTH 6 (MM) WITH 50% CON	NFIDENCE LIMITS ************************************	
SNOWMELT MODEL 1 - Easter CRITICAL PERIOD : 1ST OF ************************************	n Canada Forested Bas MONTH 10 (PRECEDING RETURI 1 DAY 28.66+/- 0.84 36.75+/- 1.42	sin YEAR) TO THE END N PERIOD VALUES ( ************************************	OF MONTH 6 (MM) WITH 50% CON ************************************	4 DAY 54.25+/- 1.53 68.88+/- 2.57 78.56+/- 3.47 90.80+/- 4.68 99.88+/- 5.60 1	<pre>************************************</pre>
SNOWMELT MODEL 1 - Easter CRITICAL PERIOD : 1ST OF ************************************	n Canada Forested Bas MONTH 10 (PRECEDING RETURI 1 DAY 28.66+/- 0.84 36.75+/- 1.42 42.11+/- 1.92 48.88+/- 2.59 53.91+/- 3.10	sin YEAR) TO THE END N PERIOD VALUES ( ************************************	OF MONTH 6 (MM) WITH 50% CON ************************************	4 DAY 54.25+/- 1.53 68.88+/- 2.57 78.56+/- 3.47 90.80+/- 4.68 99.88+/- 5.60 1	<pre>************************************</pre>

50 100					10 11	7.26+/-	5.58 6.68	96.38+ 111.57+ 122.84+ 134.03+	/- 6.95	119.5 131.7	6+/- 6. 6+/- 7.	29 131 52 144	.08+/- .99+/-	7.17 1 8.58 1	138.32+/ 153.25+/	/- 7.70 /- 9.21			
RETUR YEAR	N PERI S	OD				15 DAY		20 DA	Y	25	DAY	3	0 DAY						
2 5 10 25 50 100					11 13 15 17	7.15+/- 5.01+/- 7.58+/- 4.32+/-	4.74 6.40 8.63 10.33	101.59+ 134.65+ 156.53+ 184.18+ 204.70+ 225.06+	/- 5.81 /- 7.85 /-10.58 /-12.66	149.1 173.3 203.8 226.5	5+/- 6. 3+/- 8. 9+/-11. 5+/-13.	42 158 67 183 69 215 99 238	.49+/- .63+/- .40+/-1 .97+/-1	6.67 9.01 2.15 4.54					
					*****	PREPA	+SNOWME RED BY	OROLOGI LT DEPT THE ENG	H, DURA INEERIN	TION, F G CLIMA	REQUENC TE SERV	Y VALUE ICES UN	IT	*****	******			<******* 1BER 61	*****
	ION :				IDE: 76	COL		ION (M):	160							STA		IBER OL	.03307
	TUDE:							(01/01/		22/01/2	016)								
			•	-	-			<b>、</b> · · ·		22/01/2	010)								
					NORTH	America	Mounta	ain Basi	n										
CRII						<pre>0 / D D D D</pre>		(										<u></u>	10/00
					MONTH 1	0 (PREC	EDING Y	(EAR) TO	THE EN	D OF MO	NTH 6				NC	DTE : MO	DIFIED	GUMBEL	, -
	TOTAL DAYS	. %		START		·		YEAR) TO 4 DAY				8 DAY	9 DAY	10 DAY					12/82 MAX SNPK
YR	TOTAL	. %	FLA	START G MAX M/D	1 DAY 2/ 2	2 DAY 2/ 1	3 DAY 2/ 1	4 DAY 3/16	5 DAY 3/15	6 DAY 3/15	7 DAY 3/15	3/15	3/15	3/10	15 DAY 3/ 9	20 DAY 3/ 9	25 DAY 3/ 9	30 DAY 3/ 9	MAX
YR	TOTAL DAYS 198	.% VALID	FLA	START G MAX M/D .1MM M/D	1 DAY 2/ 2 315 3/24	2 DAY 2/ 1 477 3/23	3 DAY 2/ 1 477 3/22	4 DAY 3/16 561 3/21	5 DAY 3/15 604 3/20	6 DAY 3/15 604 3/19	7 DAY 3/15 604 3/18	3/15 604 3/17	3/15 604 3/17	3/10 701 3/15	15 DAY 3/9 807 3/18	20 DAY 3/ 9 862 3/17	25 DAY 3/9 862 3/15	30 DAY 3/ 9 862 3/15	MAX SNPK
YR 1968	TOTAL DAYS 198 273	.% VALID 72	FLA	START G MAX M/D .1MM M/D .1MM M/D	1 DAY 2/2 315 3/24 441 12/10	2 DAY 2/ 1 477 3/23 462 4/ 8	3 DAY 2/ 1 477 3/22 560 4/ 7	4 DAY 3/16 561 3/21 649 4/6	5 DAY 3/15 604 3/20 835 4/6	6 DAY 3/15 604 3/19 866 3/21	7 DAY 3/15 604 3/18 934 3/20	3/15 604 3/17 967 4/ 2	3/15 604 3/17 967 4/ 1	3/10 701 3/15 988 4/ 1	15 DAY 3/9 807 3/18 1115 3/26	20 DAY 3/ 9 862 3/17 1274 3/21	25 DAY 3/9 862 3/15 1295 3/19	30 DAY 3/ 9 862 3/15 1295 3/19	MAX
YR 1968 1969 1970	TOTAL DAYS 198 273 242	. % VALID 72 100 89	• FLA **	START G MAX M/D .1MM M/D .1MM M/D .1MM	1 DAY 2/2 315 3/24 441 12/10 340	2 DAY 2/ 1 477 3/23 462 4/ 8 449	3 DAY 2/ 1 477 3/22 560 4/ 7 555	4 DAY 3/16 561 3/21 649 4/6 597	5 DAY 3/15 604 3/20 835 4/6 597	6 DAY 3/15 604 3/19 866 3/21 607	7 DAY 3/15 604 3/18 934 3/20 691	3/15 604 3/17 967 4/2 817	3/15 604 3/17 967 4/ 1 838	3/10 701 3/15 988 4/ 1 838	15 DAY 3/9 807 3/18 1115 3/26 997	20 DAY 3/ 9 862 3/17 1274 3/21 1446	25 DAY 3/ 9 862 3/15 1295 3/19 1553	30 DAY 3/ 9 862 3/15 1295 3/19 1553	MAX SNPK
YR 1968 1969 1970 1971	TOTAL DAYS 198 273 242 273	. % VALID 72 100 89 100	• FLA **	START G MAX M/D .1MM M/D .1MM M/D .1MM M/D .1MM	1 DAY 2/2 315 3/24 441 12/10 340 4/19 351	2 DAY 2/ 1 477 3/23 462 4/ 8 449 4/19 631	3 DAY 2/ 1 477 3/22 560 4/ 7 555 4/18 869	4 DAY 3/16 561 3/21 649 4/6 597 4/17 984	5 DAY 3/15 604 3/20 835 4/6 597 4/16 1148	6 DAY 3/15 604 3/19 866 3/21 607 4/15 1235	7 DAY 3/15 604 3/18 934 3/20 691 4/15 1315	3/15 604 3/17 967 4/ 2 817 4/12 1551	3/15 604 3/17 967 4/ 1 838 4/12 1831	3/10 701 3/15 988 4/ 1 838 4/11 1957	15 DAY 3/9 807 3/18 1115 3/26 997 4/9 2221	20 DAY 3/ 9 862 3/17 1274 3/21 1446 4/ 2 2342	25 DAY 3/ 9 862 3/15 1295 3/19 1553 3/29 2466	30 DAY 3/ 9 862 3/15 1295 3/19 1553 3/29 2466	MAX SNPK
YR 1968 1969 1970 1971	TOTAL DAYS 198 273 242	. % VALID 72 100 89	• FLA **	START G MAX M/D .1MM M/D .1MM M/D .1MM M/D .1MM M/D	1 DAY 2/2 315 3/24 441 12/10 340 4/19 351 2/13	2 DAY 2/ 1 477 3/23 462 4/ 8 449 4/19 631 4/14	3 DAY 2/ 1 477 3/22 560 4/ 7 555 4/18 869 4/13	4 DAY 3/16 561 3/21 649 4/6 597 4/17 984 4/12	5 DAY 3/15 604 3/20 835 4/6 597 4/16 1148 4/11	6 DAY 3/15 604 3/19 866 3/21 607 4/15 1235 4/11	7 DAY 3/15 604 3/18 934 3/20 691 4/15 1315 4/11	3/15 604 3/17 967 4/ 2 817 4/12 1551 4/10	3/15 604 3/17 967 4/1 838 4/12 1831 4/9	3/10 701 3/15 988 4/ 1 838 4/11 1957 4/ 9	15 DAY 3/ 9 807 3/18 1115 3/26 997 4/ 9 2221 4/ 3	20 DAY 3/ 9 862 3/17 1274 3/21 1446 4/ 2 2342 3/29	25 DAY 3/ 9 862 3/15 1295 3/19 1553 3/29 2466 3/22	30 DAY 3/ 9 862 3/15 1295 3/19 1553 3/29 2466 3/21	MAX SNPK 692 2309
YR 1968 1969 1970 1971 1972	TOTAL DAYS 198 273 242 273 274	. % VALID 72 100 89 100	• FLA **	START G MAX M/D .1MM M/D .1MM M/D .1MM M/D .1MM M/D .1MM M/D	1 DAY 2/2 315 3/24 441 12/10 340 4/19 351 2/13 284 12/31	2 DAY 2/ 1 477 3/23 462 4/ 8 449 4/19 631 4/14 426 1/18	3 DAY 2/ 1 477 3/22 560 4/ 7 555 4/18 869 4/13 613 1/17	4 DAY 3/16 561 3/21 649 4/6 597 4/17 984 4/12 781 3/4	5 DAY 3/15 604 3/20 835 4/6 597 4/16 1148 4/11 934 3/3	6 DAY 3/15 604 3/19 866 3/21 607 4/15 1235 4/11 1022 3/ 2	7 DAY 3/15 604 3/18 934 3/20 691 4/15 1315 4/11 1157 1/17	3/15 604 3/17 967 4/2 817 4/12 1551 4/10 1190 1/16	3/15 604 3/17 967 4/1 838 4/12 1831 4/9 1193 1/16	3/10 701 3/15 988 4/1 838 4/11 1957 4/9 1193 1/17	15 DAY 3/ 9 807 3/18 1115 3/26 997 4/ 9 2221 4/ 3 1265 1/16	20 DAY 3/ 9 862 3/17 1274 3/21 1446 4/ 2 2342 3/29 1454 1/16	25 DAY 3/ 9 862 3/15 1295 3/19 1553 3/29 2466 3/22 1486 1/16	30 DAY 3/ 9 862 3/15 1295 3/19 1553 3/29 2466 3/21 1737 12/30	MAX SNPK 692 2309 1100
YR 1968 1969 1970 1971 1972 1973	TOTAL DAYS 198 273 242 273 274 274 273	VALID 72 100 89 100 100 100	• FLA **	START G MAX M/D .1MM M/D .1MM M/D .1MM M/D .1MM M/D .1MM M/D .1MM	1 DAY 2/2 315 3/24 441 12/10 340 4/19 351 2/13 284 12/31 259	2 DAY 2/ 1 477 3/23 462 4/ 8 449 4/19 631 4/14 426 1/18 393	3 DAY 2/ 1 477 3/22 560 4/ 7 555 4/18 869 4/13 613 1/17 530	4 DAY 3/16 561 3/21 649 4/ 6 597 4/17 984 4/12 781 3/ 4 596	5 DAY 3/15 604 3/20 835 4/6 597 4/16 1148 4/11 934 3/3 690	6 DAY 3/15 604 3/19 866 3/21 607 4/15 1235 4/11 1022 3/ 2 693	7 DAY 3/15 604 3/18 934 3/20 691 4/15 1315 4/11 1157 1/17 761	3/15 604 3/17 967 4/2 817 4/12 1551 4/10 1190 1/16 803	3/15 604 3/17 967 4/1 838 4/12 1831 4/9 1193 1/16 803	3/10 701 3/15 988 4/ 1 838 4/11 1957 4/ 9 1193 1/17 803	15 DAY 3/ 9 807 3/18 1115 3/26 997 4/ 9 2221 4/ 3 1265 1/16 854	20 DAY 3/ 9 862 3/17 1274 3/21 1446 4/ 2 2342 3/29 1454 1/16 1172	25 DAY 3/ 9 862 3/15 1295 3/19 1553 3/29 2466 3/22 1486 1/16 1175	30 DAY 3/ 9 862 3/15 1295 3/19 1553 3/29 2466 3/21 1737 12/30 1213	MAX SNPK 692 2309
YR 1968 1969 1970 1971 1972 1973 1974	TOTAL DAYS 198 273 242 273 274 273 273	VALID 72 100 89 100 100 100 100	• FLA **	START G MAX M/D .1MM M/D .1MM M/D .1MM M/D .1MM M/D .1MM M/D .1MM	1 DAY 2/2 315 3/24 441 12/10 340 4/19 351 2/13 284 12/31 259 4/3 397	2 DAY 2/ 1 477 3/23 462 4/ 8 449 4/19 631 4/14 426 1/18 393 4/ 2 470	3 DAY 2/ 1 477 3/22 560 4/ 7 555 4/18 869 4/13 613 1/17 530 4/ 1 646	4 DAY 3/16 561 3/21 649 4/ 6 597 4/17 984 4/12 781 3/ 4 596 3/31 738	5 DAY 3/15 604 3/20 835 4/6 597 4/16 1148 4/11 934 3/3 690 3/30 888	6 DAY 3/15 604 3/19 866 3/21 607 4/15 1235 4/11 1022 3/ 2 693 3/29 934	7 DAY 3/15 604 3/18 934 3/20 691 4/15 1315 4/11 1157 1/17 761 3/29 934	3/15 604 3/17 967 4/2 817 4/12 1551 4/10 1190 1/16 803 3/29 934	3/15 604 3/17 967 4/1 838 4/12 1831 4/9 1193 1/16 803 3/29 934	3/10 701 3/15 988 4/1 838 4/11 1957 4/9 1193 1/17 803 3/29 934	15 DAY 3/ 9 807 3/18 1115 3/26 997 4/ 9 2221 4/ 3 1265 1/16 854 2/19 980	20 DAY 3/ 9 862 3/17 1274 3/21 1446 4/ 2 2342 3/29 1454 1/16 1172 2/13 993	25 DAY 3/ 9 862 3/15 1295 3/19 1553 3/29 2466 3/22 1486 1/16 1175 2/13 1003	30 DAY 3/ 9 862 3/15 1295 3/19 1553 3/29 2466 3/21 1737 12/30 1213 2/13 1003	MAX SNPK 692 2309 1100
YR 1968 1969 1970 1971 1972 1973 1974	TOTAL DAYS 198 273 242 273 274 274 273	VALID 72 100 89 100 100 100	• FLA **	START G MAX M/D .1MM M/D .1MM M/D .1MM M/D .1MM M/D .1MM M/D .1MM M/D .1MM M/D	1 DAY 2/ 2 315 3/24 441 12/10 340 4/19 351 2/13 284 12/31 259 4/ 3 397 3/19	2 DAY 2/ 1 477 3/23 462 4/ 8 449 4/19 631 4/14 426 1/18 393 4/ 2 470 3/18	3 DAY 2/ 1 477 3/22 560 4/ 7 555 4/18 869 4/13 613 1/17 530 4/ 1 646 3/18	4 DAY 3/16 561 3/21 649 4/ 6 597 4/17 984 4/12 781 3/ 4 596 3/31 738 3/17	5 DAY 3/15 604 3/20 835 4/6 597 4/16 1148 4/11 934 3/3 690 3/30 888 3/18	6 DAY 3/15 604 3/19 866 3/21 607 4/15 1235 4/11 1022 3/ 2 693 3/29 934 3/18	7 DAY 3/15 604 3/18 934 3/20 691 4/15 1315 4/11 1157 1/17 761 3/29 934 3/18	3/15 604 3/17 967 4/2 817 4/12 1551 4/10 1190 1/16 803 3/29 934 3/18	3/15 604 3/17 967 4/1 838 4/12 1831 4/9 1193 1/16 803 3/29 934 3/17	3/10 701 3/15 988 4/1 838 4/11 1957 4/9 1193 1/17 803 3/29 934 3/17	15 DAY 3/ 9 807 3/18 1115 3/26 997 4/ 9 2221 4/ 3 1265 1/16 854 2/19 980 3/17	20 DAY 3/ 9 862 3/17 1274 3/21 1446 4/ 2 2342 3/29 1454 1/16 1172 2/13 993 3/12	25 DAY 3/ 9 862 3/15 1295 3/19 1553 3/29 2466 3/22 1486 1/16 1175 2/13 1003 3/12	30 DAY 3/ 9 862 3/15 1295 3/19 1553 3/29 2466 3/21 1737 12/30 1213 2/13 1003 3/18	MAX SNPK 692 2309 1100 863 692
YR 1968 1969 1970 1971 1972 1973 1974 1975	TOTAL DAYS 198 273 242 273 274 273 273	VALID 72 100 89 100 100 100 100	• FLA **	START G MAX M/D .1MM M/D .1MM M/D .1MM M/D .1MM M/D .1MM M/D .1MM M/D .1MM M/D	1 DAY 2/2 315 3/24 441 12/10 340 4/19 351 2/13 284 12/31 259 4/3 397 3/19 470 3/20	2 DAY 2/ 1 477 3/23 462 4/ 8 449 4/19 631 4/14 426 1/18 393 4/ 2 470 3/18 620 3/24	3 DAY 2/ 1 477 3/22 560 4/ 7 555 4/18 869 4/13 613 1/17 530 4/ 1 646 3/18 718 3/24	4 DAY 3/16 561 3/21 649 4/ 6 597 4/17 984 4/12 781 3/ 4 596 3/31 738 3/17 759 3/24	5 DAY 3/15 604 3/20 835 4/6 597 4/16 1148 4/11 934 3/3 690 3/30 888 3/18 861 3/24	6 DAY 3/15 604 3/19 866 3/21 607 4/15 1235 4/11 1022 3/ 2 693 3/29 934 3/18 920 3/20	7 DAY 3/15 604 3/18 934 3/20 691 4/15 1315 4/11 1157 1/17 761 3/29 934 3/18 1027 3/20	3/15 604 3/17 967 4/2 817 4/12 1551 4/10 1190 1/16 803 3/29 934 3/18 1116 3/19	3/15 604 3/17 967 4/1 838 4/12 1831 4/9 1193 1/16 803 3/29 934 3/17 1157 3/19	3/10 701 3/15 988 4/1 838 4/11 1957 4/9 1193 1/17 803 3/29 934 3/17 1157 3/19	15 DAY 3/ 9 807 3/18 1115 3/26 997 4/ 9 2221 4/ 3 1265 1/16 854 2/19 980 3/17 1243 3/12	20 DAY 3/ 9 862 3/17 1274 3/21 1446 4/ 2 2342 3/29 1454 1/16 1172 2/13 993 3/12 1323 2/15	25 DAY 3/ 9 862 3/15 1295 3/19 1553 3/29 2466 3/22 1486 1/16 1175 2/13 1003 3/12 1386 3/ 2	30 DAY 3/ 9 862 3/15 1295 3/19 1553 3/29 2466 3/21 1737 12/30 1213 2/13 1003 3/18 1760 2/26	MAX SNPK 692 2309 1100 863 692 733
YR 1968 1969 1970 1971 1972 1973 1974 1975 1976	TOTAL DAYS 198 273 242 273 274 273 273 273 273 274	VALID 72 100 89 100 100 100 100 100	• FLA **	START G MAX M/D .1MM M/D .1MM M/D .1MM M/D .1MM M/D .1MM M/D .1MM M/D .1MM M/D .1MM	1 DAY 2/2 315 3/24 441 12/10 340 4/19 351 2/13 284 12/31 259 4/3 397 3/19 470 3/20 341	2 DAY 2/ 1 477 3/23 462 4/ 8 449 4/19 631 4/14 426 1/18 393 4/ 2 470 3/18 620 3/24 640	3 DAY 2/ 1 477 3/22 560 4/ 7 555 4/18 869 4/13 613 1/17 530 4/ 1 646 3/18 718 3/24 817	4 DAY 3/16 561 3/21 649 4/ 6 597 4/17 984 4/12 781 3/ 4 596 3/31 738 3/17 759 3/24 817	5 DAY 3/15 604 3/20 835 4/6 597 4/16 1148 4/11 934 3/3 690 3/30 888 3/18 861 3/24 817	6 DAY 3/15 604 3/19 866 3/21 607 4/15 1235 4/11 1022 3/ 2 693 3/29 934 3/18 920 3/20 1068	7 DAY 3/15 604 3/18 934 3/20 691 4/15 1315 4/11 1157 1/17 761 3/29 934 3/18 1027 3/20 1245	3/15 604 3/17 967 4/2 817 4/12 1551 4/10 1190 1/16 803 3/29 934 3/18 1116 3/19 1331	3/15 604 3/17 967 4/1 838 4/12 1831 4/9 1193 1/16 803 3/29 934 3/17 1157 3/19 1331	3/10 701 3/15 988 4/11 1957 4/9 1193 1/17 803 3/29 934 3/17 1157 3/19 1331	15 DAY 3/ 9 807 3/18 1115 3/26 997 4/ 9 2221 4/ 3 1265 1/16 854 2/19 980 3/17 1243 3/12 1399	20 DAY 3/ 9 862 3/17 1274 3/21 1446 4/ 2 2342 3/29 1454 1/16 1172 2/13 993 3/12 1323 2/15 1435	25 DAY 3/ 9 862 3/15 1295 3/19 1553 3/29 2466 3/22 1486 1/16 1175 2/13 1003 3/12 1386 3/ 2 1753	30 DAY 3/ 9 862 3/15 1295 3/19 1553 3/29 2466 3/21 1737 12/30 1213 2/13 1003 3/18 1760 2/26 2195	MAX SNPK 692 2309 1100 863 692
YR 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977	TOTAL DAYS 198 273 242 273 274 273 273 273 273 274	. % VALID 72 100 89 100 100 100 100 100	• FLA **	START G MAX M/D .1MM M/D .1MM M/D .1MM M/D .1MM M/D .1MM M/D .1MM M/D .1MM M/D	1 DAY 2/2 315 3/24 441 12/10 340 4/19 351 2/13 284 12/31 259 4/3 397 3/19 470 3/20	2 DAY 2/ 1 477 3/23 462 4/ 8 449 4/19 631 4/14 426 1/18 393 4/ 2 470 3/18 620 3/24	3 DAY 2/ 1 477 3/22 560 4/ 7 555 4/18 869 4/13 613 1/17 530 4/ 1 646 3/18 718 3/24	4 DAY 3/16 561 3/21 649 4/ 6 597 4/17 984 4/12 781 3/ 4 596 3/31 738 3/17 759 3/24	5 DAY 3/15 604 3/20 835 4/6 597 4/16 1148 4/11 934 3/3 690 3/30 888 3/18 861 3/24	6 DAY 3/15 604 3/19 866 3/21 607 4/15 1235 4/11 1022 3/ 2 693 3/29 934 3/18 920 3/20	7 DAY 3/15 604 3/18 934 3/20 691 4/15 1315 4/11 1157 1/17 761 3/29 934 3/18 1027 3/20	3/15 604 3/17 967 4/2 817 4/12 1551 4/10 1190 1/16 803 3/29 934 3/18 1116 3/19	3/15 604 3/17 967 4/1 838 4/12 1831 4/9 1193 1/16 803 3/29 934 3/17 1157 3/19	3/10 701 3/15 988 4/1 838 4/11 1957 4/9 1193 1/17 803 3/29 934 3/17 1157 3/19	15 DAY 3/ 9 807 3/18 1115 3/26 997 4/ 9 2221 4/ 3 1265 1/16 854 2/19 980 3/17 1243 3/12	20 DAY 3/ 9 862 3/17 1274 3/21 1446 4/ 2 2342 3/29 1454 1/16 1172 2/13 993 3/12 1323 2/15	25 DAY 3/ 9 862 3/15 1295 3/19 1553 3/29 2466 3/22 1486 1/16 1175 2/13 1003 3/12 1386 3/ 2	30 DAY 3/ 9 862 3/15 1295 3/19 1553 3/29 2466 3/21 1737 12/30 1213 2/13 1003 3/18 1760 2/26	MAX SNPK 692 2309 1100 863 692 733

1979	273	100	M/D	1/1	12/31	12/30	3/3	3/3	3/3	3/3	3/3	3/1	3/1	2/23	2/22	2/21	2/21	000
1980	274	100	.1MM M/D	278 3/21	548 3/20	588 3/20	608 3/18	671 3/17	760 3/17	923 3/17	969 3/17	1015 3/17	1062 3/17	1219 3/10	1382 3/10	1471 3/10	1536 2/21	803
4004	<b>07</b> 0	100	.1MM	452	700	700	729	788	788	788	788	788	788	792	792	792	805	466
1981	273	100	M/D .1MM	2/19 362	2/18 607	2/17 764	2/16 937	2/16 937	2/16 937	2/16 937	2/16 937	2/11 1054	2/10 1284	2/10 1284	2/ 1 1354	1/26 1538	1/26 1538	632
1982	273	100	. IMM M/D	3/25	3/30	3/29	3/11	3/11	3/25	3/25	3/24	3/24	3/22	3/17	3/12	3/11	3/11	052
1902	275	100	.1MM	268	453	466	479	479	518	769	832	832	862	1124	1507	1604	1604	1050
1983	273	100	M/D	1/10	1/10	1/10	1/10	1/10	1/10	1/10	1/10	1/10	12/15	1/10	12/23	12/23	12/14	
			.1MM	280	367	367	367	367	367	367	367	367	399	422	536	536	776	243
1984	274	100	M/D	2/14	2/13	2/13	2/11	2/11	2/11	2/11	2/11	2/11	2/11	2/2	2/2	1/24	11/15	
4005		100	.1MM	580	820	909	1029	1118	1182	1182	1182	1182	1182	1340	1340	1450	1491	735
1985	273	100	M/D	2/23 437	2/22	2/22 872	2/21 962	2/21 992	2/21 996	2/21 996	2/22	2/21	2/21	2/22	2/22 1874	2/21	2/13	897
1986	273	100	.1MM M/D	437 1/19	727 1/19	1/18	962 1/17	992 1/17	996 1/17	3/13	1031 3/19	1121 3/18	1201 3/17	1209 3/13	3/10	1964 3/10	2003 3/10	097
1900	275	100	.1MM	342	507	651	683	683	696	733	813	961	974	1278	1402	1402	1402	1023
1987	273	100	M/D	3/1	3/7	3/7	3/7	3/7	3/7	3/1	3/1	2/28	2/28	2/28	2/28	2/28	2/28	1025
			.1MM	239	372	372	372	372	372	400	624	744	744	744	943	998	998	642
1988	274	100	M/D	3/25	11/28	11/28	3/23	3/23	3/23	3/23	3/23	3/23	3/23	11/28	3/7	11/28	11/28	
			.1MM	467	723	764	841	841	841	841	841	841	841	922	1156	1259	1288	658
1989	273	100	M/D	3/27	3/26	3/25	3/24	3/24	3/24	3/24	3/24	3/24	3/24	3/14	3/14	3/4	3/4	
1000	272	100	.1MM	315	455	552	658	729	729	729	729	756	756	1006	1033	1066	1093	667
1990	273	100	M/D	1/17	1/17 507	1/17 507	1/17 507	1/17 507	1/17 507	1/17 559	1/17 680	1/17 836	1/17	1/17 895	1/9	1/17	1/17	540
1991	273	100	.1MM M/D	342 12/29	12/29	2/3	2/3	2/3	3/1	3/1	3/1	3/1	849 3/ 1	2/20	967 2/18	1177 3/ 1	1321 2/ 3	540
1))1	275	100	.1MM	390	390	470	470	470	569	569	569	569	569	731	854	917	1124	471
1992	274	100	M/D	3/26	3/25	3/8	3/7	3/6	3/6	3/6	3/25	3/25	3/25	3/25	3/7	3/7	3/6	., =
			.1MM	403	483	602	, 747	831	831	831	891	946	967	1008	1231	1559	1829	644
1993	273	100	M/D	1/ 4	1/ 3	3/27	3/26	3/25	3/24	3/24	3/22	3/21	3/24	3/24	3/21	3/16	3/8	
			.1MM	513	627	699	780	877	974	974	987	1008	1014	1234	1268	1288	1461	984
1994	272	100	M/D	2/20	3/22	3/22	3/21	3/21	3/21	3/22	3/21	3/21	3/22	3/21	3/14	3/15	3/14	050
1005	272	100	.1MM	264	414	579	659	663	667	678	758	821	868	1219	1340	1422	1451	959
1995	273	100	M/D .1MM	3/ 7 284	1/13 418	1/12 486	1/12 486	1/12 486	1/12 486	3/7 575	3/ 6 648	3/5 688	3/5 688	3/5 688	3/5 688	2/19 785	12/16 806	392
1996	274	100	M/D	11/11	1/18	1/16	1/16	2/20	2/20	2/19	2/20	2/20	2/19	1/16	2/8	2/19	1/27	552
	_, .		.1MM	382	476	609	720	823	946	964	986	1024	1042	1093	1205	1321	1397	804
1997	273	100	M/D	3/25	3/28	3/27	3/27	3/25	3/25	3/25	3/25	3/25	3/25	3/25	3/14	3/14	3/ 1	
			.1MM	278	474	656	744	989	1077	1077	1124	1157	1157	1157	1180	1180	1292	732
1998	273	100	M/D	1/ 7	3/8	1/5	1/5	1/3	1/2	1/2	1/2	1/2	1/2	2/24	2/18	2/17	2/25	
1000	272	100	.1MM	254	363	466	486	541	587	607	617	617	617	722	856	1018	1110	395
1999	273	100	M/D .1MM	1/23 245	3/17 291	2/10 341	2/10 341	3/17 383	1/18 476	1/17 573	1/17 586	1/17 586	1/17 586	2/2 588	1/17 827	1/18 963	1/17 1169	585
2000	274	100	M/D	2/24	2/23	2/23	2/23	2/23	2/23	2/23	2/23	2/23	2/23	2/23	2/23	2/23	2/23	202
2000	2/4	100	.1MM	339	497	562	712	838	838	838	838	838	838	883	883	1118	1154	610
2001	273	100	M/D	2/9	12/16	4/4	4/4	4/4	4/3	4/2	4/1	3/31	3/30	3/29	3/21	3/15	3/12	010
			.1MM	424	551	690	867	1034	1165	1254	1258	1262	1282	1295	1688	1785	1880	1493
2002	273	100	M/D	3/ 2	2/20	2/19	3/27	1/23	1/22	2/15	2/15	2/15	3/27	2/19	2/15	2/10	1/23	
			.1MM	216	335	355	383	438	451	542	542	542	548	709	896	968	1140	398
2003	273	100	M/D	3/17	3/20	3/20	3/20	3/20	3/17	3/17	3/17	3/16	3/16	3/16	3/16	3/17	3/16	4202
2004	274	100	.1MM	300	488	683	864	1021	1114	1296	1452	1550	1621	1621	1621	1748	1846	1303
2004	274	100	M/D .1MM	12/10 492	12/10 508	3/ 3 621	3/ 2 811	3/ 1 970	3/ 1 1050	2/29 1114	2/28 1135	2/28 1135	2/28 1135	2/29 1249	2/28 1316	3/ 1 1386	2/28 1471	930
2005	273	100	M/D	1/13	2/14	2/14	12/30	12/30	12/30	12/30	12/30	2/7	2/7	12/30	12/22	12/22	12/22	926
_000			.1MM	199	350	350	425	489	489	489	489	637	637	766	778	1044	1044	360
			• = •															

2006	273	100		M/D	11/29	11/28	11/27	11/27	11/27	11/27	11/27	11/27	11/27	11/27	1/4	1/4	12/25	12/23	
2007	273	100		.1MM M/D	, 426 3/13	730 3/13	, 780 3/12	, 780 3/11	, 780 3/10	, 780 3/10	, 780 3/10	, 780 3/10	, 780 3/10	, 780 3/10	933 3/10	933 3/3	1096 3/ 1	1223 3/1	290
				.1MM	198	385	465	562	572	572	572	572	572	572	648	687	707	707	535
2008	274	100		M/D .1MM	12/23 500	12/22 530	1/ 6 646	1/ 5 666	4/ 1 781	3/31 907	3/31 908	3/31 908	3/28 953	3/27 1000	3/26 1082	3/18 1416	3/15 1583	3/ 8 1593	1200
2009	273	100		M/D	2/11	2/11	3/6	3/ 5	12/24	12/24	12/24	12/24	12/24	2/26	12/14	12/ 9	2/11	2/11	
2010	273	100		.1MM M/D	381 1/24	574 1/24	577 1/24	583 1/24	677 1/24	725 1/24	725 1/19	725 1/19	725 1/19	743 1/16	981 1/14	1035 1/14	1318 1/ 1	1492 12/27	704
			ماد ماد	.1MM	442	850	871	871	871	871	880	901	901	947	1045	1045	1053	1083	457
2011	226	83	**	M/D .1MM	3/10 420	3/10 563	3/16 657	3/16 661	3/16 661	3/5 740	3/5 883	3/10 1022	3/10 1305	3/10 1309	3/ 5 1629	2/27 1778	2/27 1917	2/18 2032	
2012	274	100		M/D	11/24	1/31	1/31	1/23	1/23	1/23	1/26	1/26	1/24	1/23	1/23	1/17	1/17	1/17	407
2013	273	100		.1MM M/D	152 3/11	161 3/10	161 3/10	236 3/9	236 3/8	236 3/7	271 3/ 6	271 3/ 6	310 3/ 6	398 3/6	461 2/27	543 1/11	606 1/ 6	650 2/25	187
				.1MM	499	673	809	838	851	881	893	893	893	893	993	1091	1144	1159	677
2014	273	100		M/D .1MM	4/7 358	2/20 500	2/20 589	4/4 727	4/3 740	4/2 854	4/ 1 934	3/31 1048	3/30 1086	3/29 1158	3/28 1334	3/19 1536	3/15 1633	3/10 1827	1038
2015	273	100		M/D	4/ 3	4/ 2	4/2	4/ 2	3/30	3/30	3/30	3/30	3/30	3/26	3/21	3/16	3/10	3/9	
2016	114	42	**	.1MM M/D	291 1/ 9	533 1/8	588 1/8	600 1/ 8	613 1/ 8	668 1/ 8	681 1/ 8	685 1/8	731 1/8	748 12/31	866 12/29	989 12/29	1367 12/20	1498 12/20	1140
				.1MM	205	219	219	219	219	219	219	219	219	258	, 292	292	312	312	
*****	*****	****	****	*****	******	*****	*****	******	*****	*****	*****	*****	*****	******	******	******	*****	*****	******
					1 DAY	2 DAY	3 DAY	4 DAY	5 DAY	6 DAY	7 DAY	8 DAY	9 DAY	10 DAY	15 DAY	20 DAY	25 DAY	30 DAY	
MEAN EXTREME (MM) 3				35.6	51.5	61.3	68.5	74.9	79.7	84.2	88.3	92.8	95.5	106.8	120.8	131.6	141.6		
STD. DEV. (MM) YEARS ANALYSED			10.0 45	14.0 45	16.8 45	19.6 45	22.5 45	24.7 45	25.7 45	27.5 45	30.2 45	31.8 45	34.8 45	39.9 45	41.6 45	44.6 45			
MAX EXTREME (MM) 5				58.0	85.0	90.9	105.5	114.8	123.5	131.5	155.1	183.1	195.7	222.1	234.2	246.6	269.4		
	YEAR				1984	2010	1984	1977	1971	1971	1971	1971	1971	1971	1971	1971	1971	1978	
** N	NOTE *	* VA	LUE 1	IN FLAG	INDICA	TES YEA	R NOT I	NCLUDED	IN ANA	LYSIS B	ASED ON	% DAYS	OPERAT	IONAL (	<90.0%	5)			
							METE	OROLOGI	CAL SER	VICE OF	CANADA	L .							
									-	-	-	Y VALUE							
PREPARED BY THE ENGINEERING CLIMATE SERVICES UNIT ************************************																			
STATION : HARTINGTON IHD STATION NUMBER 6103367																			
LATITUDE: 44.43N LONGITUDE: 76.69W ELEVATION (M): 160																			
ARCHIVE: DLY04 (15/12/1967 - 31/12/2006) DLY44 (01/01/2007 - 22/01/2016)																			
SNOWM	SNOWMELT MODEL 2 - Western North America Mountain Basin																		
CRITICAL PERIOD : 1ST OF MONTH 10 (PRECEDING YEAR) TO THE END OF MONTH 6 NOTE : MODIFIED GUMBEL 12/82																			
RETURN PERIOD VALUES (MM) WITH 50% CONFIDENCE LIMITS																			
RETURN PERIOD																			
YEARS		00				1 DAY		2 DA	Y	3	DAY		4 DAY		5 DAY	(			

2 5 10 25 50 100	33.92+/- 0.92 42.76+/- 1.55 48.62+/- 2.10 56.01+/- 2.83 61.50+/- 3.39 66.95+/- 3.95	61.56+/- 2.18 69.78+/- 2.94 80.15+/- 3.97 87.85+/- 4.75	83.29+/- 3.53 95.75+/- 4.77 104.99+/- 5.70	82.65+/- 3.05 94.15+/- 4.12	104.25+/- 4.72 120.87+/- 6.36 133.20+/- 7.61
RETURN PERIOD YEARS	6 DAY	7 DAY	8 DAY	9 DAY	10 DAY
2 5 10 25 50 100	97.40+/- 3.83 111.84+/- 5.18 130.08+/- 6.98 143.62+/- 8.35	102.68+/- 3.99 117.72+/- 5.39 136.73+/- 7.27 150.83+/- 8.70	108.10+/- 4.28 124.21+/- 5.78 144.56+/- 7.79 159.66+/- 9.32	87.85+/- 2.78 114.51+/- 4.69 132.16+/- 6.33 154.47+/- 8.53 171.02+/-10.21 187.44+/-11.90	118.30+/- 4.93 136.89+/- 6.66 160.37+/- 8.98 177.78+/-10.75
RETURN PERIOD YEARS	15 DAY	20 DAY	25 DAY	30 DAY	
2 5 10 25 50 100 ** WARNING ** : 100 YEAR VALUE ** WARNING ** : 100 YEAR VALUE	131.85+/- 5.40 152.18+/- 7.29 177.88+/- 9.83 196.94+/-11.76 215.86+/-13.70 S IN 1971 BASED S IN 1971 BASED MET RAIN+SNOWM PREPARED BY	ON 15 DAYS ACCU EOROLOGICAL SERV ELT DEPTH, DURAT THE ENGINEERING	161.54+/- 6.45 185.85+/- 8.72 216.57+/-11.75 239.36+/-14.06 261.98+/-16.38 MULATION MULATION TICE OF CANADA TON, FREQUENCY V CLIMATE SERVICE	173.65+/- 6.92 199.74+/- 9.35 232.70+/-12.61 257.15+/-15.09 281.42+/-17.58	****
STATION : HARTINGTON IHD	• • • • • • • • • • • • • • • • • • • •	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	STATION NUMBER 6103367
LATITUDE: 44.43N LONGITUDE:		ION (M): 160			
ARCHIVE: DLY04 (15/12/1967 - 3		•	2/01/2016)		
SNOWMELT MODEL 3 - Western Car CRITICAL PERIOD : 1ST OF MONT			OF MONTH 6		NOTE : MODIFIED GUMBEL 12/82
TOTAL % START				DAY 9 DAY 10 DA'	MAX Y 15 DAY 20 DAY 25 DAY 30 DAY SNPK
.1MM 2 1969 273 100 M/D 3/ .1MM 4 1970 242 89 ** M/D 12/		559 710 3/21 3/20 618 779 4/6 4/6	753 753 3/20 3/19 3 849 866 4/ 8 4/ 7 4	/15 3/15 3/1 753 753 75 /18 3/17 3/1 915 933 93 / 6 4/ 6 4/ 6	3 915 974 974 974 7 3/22 3/17 3/15 3/15 3 1110 1428 1436 1436 713 6 4/ 1 3/21 3/20 3/19
	340 485 568 /19 4/19 4/19			872 872 872 /15 4/12 4/12	

			1 1 4 4 4	207	CAC	070	1072	1 7 7 1	1717	1110	1510	1720	1000	2257	2201	2522	2522	2257
1972	274	100	.1MM M/D	387 2/13	646 12/9	872 4/13	1072 4/12	1221 4/14	1313 4/13	1446 4/13	1512 4/12	1739 4/11	1966 4/11	2357 4/10	2381 4/ 1	2522 3/29	2522 3/22	2357
19/2	2/4	100	.1MM	2/13	397	579	719	4/14 856	1040	1185	1325	1450	4/11 1541	1559	4/ 1 1647	1732	1964	1345
1973	273	100	M/D	12/31	1/18	1/17	3/4	3/3	3/2	1/17	1/16	1430 1/16	1/17	1/16	1047 1/16	12/30	12/26	1040
1979	275	100	.1MM	259	433	568	679	760	763	790	815	815	815	851	1169	1174	1217	913
1974	273	100	M/D	4/3	4/3	3/4	4/1	3/30	3/30	3/29	3/29	3/29	3/29	2/21	2/19	2/13	3/6	515
	275	100	.1MM	387	489	644	693	816	917	963	963	963	963	1115	1153	1162	1163	754
1975	273	100	M/D	3/19	4/17	4/16	4/15	4/14	4/13	4/13	4/13	3/17	3/17	3/12	3/17	3/12	3/19	
_	_		.1MM	466	, 599	791	941	1032	1041	1041	1041	1049	1049	1112	1170	1233	1751	883
1976	274	100	M/D	3/25	3/24	3/24	3/24	3/24	3/20	3/20	3/20	3/19	3/19	3/13	3/12	3/3	2/27	
			.1MM	470	759	909	1142	1142	1176	1326	1558	1625	1625	1645	1693	1995	2205	1322
1977	273	100	M/D	3/12	3/11	3/10	3/9	3/9	3/9	3/7	3/6	3/4	3/4	2/27	2/24	3/4	2/27	
			.1MM	431	656	979	1138	1258	1258	1267	1309	1554	1675	1749	2016	2132	2206	1332
1978	273	100	M/D	1/24	4/11	4/11	4/11	4/11	4/11	4/11	4/11	4/11	4/11	4/5	3/31	3/27	3/21	
			.1MM	477	481	735	826	909	1059	1192	1384	1664	1664	1955	2385	2687	2930	1910
1979	273	100	M/D	12/31	12/31	12/30	12/30	3/3	3/3	3/3	3/3	3/1	3/ 1	2/23	3/3	3/1	2/21	
4000		100	.1MM	250	497	537	537	565	633	773	803	853	883	1026	1313	1393	1641	952
1980	274	100	M/D	3/21	3/20	3/20	3/18	3/17	3/17	3/17	3/17	3/17	3/17	3/17	3/17	3/17	3/17	500
1981	272	100	.1MM	515	767	767	782	824	824	824	824	824	824	824	824	824	824	502
1901	273	100	M/D .1MM	2/18 330	2/18 651	2/17 828	2/16 985	2/16 985	2/16 985	2/16 985	2/16 985	2/11 1083	2/10 1313	2/10 1313	2/ 1 1383	1/26 1538	1/26 1538	665
1982	273	100	M/D	3/31	3/30	3/30	3/31	3/30	3/30	3/30	3/24	3/24	3/25	3/20	3/12	3/11	3/11	605
1902	275	100	.1MM	518	691	728	818	991	991	991	1007	1044	1262	1397	1528	1903	1933	1156
1983	273	100	M/D	2/2	2/2	2/2	1/31	1/30	1/30	1/30	1/30	1/30	1/25	1/23	1/30	1/10	1/10	1150
1909	275	100	.1MM	380	538	538	556	566	566	566	566	566	581	623	636	1007	1007	260
1984	274	100	M/D	2/14	2/13	2/13	2/11	2/13	2/11	2/11	2/11	2/11	2/11	2/3	2/2	1/24	1/24	
			.1MM	, 730	938	1005	1124	1209	, 1267	, 1396	1396	1396	1396	1467	1527	1637	1637	858
1985	273	100	M/D	2/23	2/22	2/22	2/21	2/21	2/21	2/21	2/22	2/21	2/21	2/21	2/22	2/21	2/13	
			.1MM	412	701	820	910	925	925	925	935	1025	1093	1093	1679	1844	1866	912
1986	273	100	M/D	3/26	3/25	3/25	3/23	3/23	3/23	3/23	3/19	3/18	3/18	3/13	3/10	3/10	3/10	
			.1MM	523	703	703	792	792	792	792	1023	1153	1153	1403	1495	1495	1495	1116
1987	273	100	M/D	11/26	4/3	11/24	11/23	11/23	11/23	11/23	3/ 1	2/28	2/28	2/28	2/28	2/28	3/7	
			.1MM	231	344	389	420	420	420	420	536	656	656	656	799	1042	1044	694
1988	274	100	M/D	3/25	3/25	3/24	3/23	3/23	3/23	3/23	3/23	3/23	3/23	3/12	3/7	11/28	11/28	650
1000	272	100	.1MM	410	723	843	913	913	913	913	913	913	913	944	1175	1217	1373	658
1989	273	100	M/D	3/28	3/27	3/26	3/25	3/24	3/24	3/24	3/24	3/24	3/24	3/14	3/14	3/4	3/4	000
1990	273	100	.1MM M/D	435 1/17	704 1/17	816 1/17	891 3/10	978 3/10	978 3/10	978 3/10	978 1/17	1018 1/17	1018 1/17	1208 2/ 9	1248 2/22	1268 1/17	1308 1/17	909
1990	275	100	.1MM	310	457	457	530	530	530	530	594	724	724	772	916	997	1191	556
1991	273	100	M/D	12/29	3/1	2/3	2/3	2/3	3/1	3/1	3/1	3/1	3/1	12/17	2/18	3/1	2/3	550
1991	275	100	.1MM	390	427	495	495	495	627	627	627	627	627	768	854	975	1149	495
1992	274	100	M/D	3/26	3/25	3/25	3/7	3/6	3/6	3/25	3/25	3/25	3/25	3/25	3/25	3/7	3/6	
			.1MM	413	493	571	656	740	740	758	818	856	863	1196	1196	1415	1619	726
1993	273	100	M/D	1/ 4	1/ 3	3/28	3/27	3/26	3/25	3/24	3/24	3/24	3/24	3/24	3/21	3/16	3/8	
			.1MM	549	663	754	889	949	1024	1099	1099	1099	1139	1359	1366	1386	1542	1083
1994	272	100	M/D	2/20	2/19	3/22	4/2	4/ 1	3/31	3/30	4/2	3/28	3/31	3/22	3/21	3/21	3/15	
			.1MM	281	401	480	570	592	660	682	749	787	839	1277	1537	1537	1624	1065
1995	273	100	M/D	3/7	1/13	1/12	1/12	1/12	1/12	3/7	3/7	3/6	3/ 5	3/5	3/ 5	2/19	2/15	
4000	<u> </u>	4.0.0	.1MM	250	417	485	485	485	485	490	629	685	725	725	725	800	810	429
1996	274	100	M/D	11/11	1/18	1/16	1/16	2/20	2/20	2/19	2/20	2/20	2/19	1/16	2/8	1/16	2/20	0.07
1007	272	100	.1MM	395	435	570	660	730	827	845	867	890 2 / 25	908	976 2 (25	1056	1159	1346	887
1997	2/3	100	M/D 1 MM	3/25	3/28	3/27	3/27	3/25	3/25	3/25	3/25	3/25	3/25	3/25	3/25	3/14	3/14	010
1000	272	100	.1MM	278	439	589 1/5	657 1/5	905 1/3	972 1/2	972 1/2	1002	1137 1/2	1249	1249	1249	1272	1272	823
1998	215	TOO	M/D	1/7	3/8	1/ 5	1/ 5	1/ 3	1/ 2	1/ 2	1/ 2	1/ 2	2/28	2/25	2/18	2/17	2/25	

1000	272	100		.1MM	254	380	466	486	573	604	624	634	634	678	843	931	1093	1202	395
1999	273	100		M/D .1MM	1/23 215	2/28 280	2/28 280	2/28 320	2/28 320	1/18 400	1/17 480	1/17 480	1/17 480	1/17 480	3/17 600	1/17 682	1/18 786	1/17 954	585
2000	274	100		M/D	2/24	2/23	2/23	2/24	2/23	2/23	2/23	2/23	2/23	2/23	2/23	2/23	2/23	2/23	505
				.1MM	336	500	547	673	838	838	838	838	838	838	883	883	1093	1154	610
2001	273	100		M/D	4/8	4/7	4/6	4/5	4/4	4/4	4/3	4/2	4/2	4/2	3/30	3/21	3/19	3/12	1000
2002	273	100		.1MM M/D	460 3/2	607 2/20	891 1/26	1064 1/26	1229 1/26	1365 1/23	1470 1/23	1538 1/23	1538 1/23	1538 1/23	1558 2/19	1873 2/15	1888 2/10	2003 1/23	1606
2002	275	100		.1MM	216	356	464	464	464	567	567	567	595	655	753	896	2/10 968	1246	514
2003	273	100		M/D	3/17	3/20	3/20	3/20	3/20	3/20	3/17	3/17	3/17	3/16	3/16	3/16	3/17	3/16	521
				.1MM	288	477	677	827	954	1161	1231	1359	1565	1640	1640	1640	1768	1865	1322
2004	274	100		M/D	12/10	12/10	3/3	3/ 2	3/1	3/1	2/29	2/28	2/28	2/28	2/29	2/28	3/1	2/28	
2005	273	100		.1MM M/D	480 1/13	521 2/14	545 2/14	757 12/30	892 12/30	952 12/30	997 12/30	1005 3/22	1005 2/7	1005 2/7	1100 12/30	1137 12/30	1418 12/22	1471 12/22	930
2005	275	100		.1MM	211	335	350	399	444	444	444	465	581	596	721	721	979	979	496
2006	273	100		M/D	11/29	11/28	11/27	11/27	11/27	11/27	11/27	11/27	1/12	1/11	1/11	1/4	1/4	12/23	
				.1MM	468	730	780	780	780	780	780	780	824	899	945	1067	1158	1289	318
2007	273	100		M/D	3/14	3/13	3/12	3/11	3/10	3/10	3/10	3/10	3/10	3/10	3/10	3/3	3/1	3/1	535
2008	274	100		.1MM M/D	264 12/23	443 1/7	503 1/ 6	578 1/5	588 4/ 1	588 4/1	588 3/31	588 3/31	588 3/31	588 3/31	664 3/26	687 3/19	707 3/15	707 3/15	535
2000	2/4	100		.1MM	487	610	726	746	784	964	1067	1125	1125	1125	1245	1493	1663	1663	1281
2009	273	100		M/D	2/11	2/11	3/6	3/5	3/6	3/6	3/5	3/5	3/5	2/27	2/26	2/26	2/11	2/11	-
				.1MM	408	594	628	634	708	773	779	779	779	790	987	987	1304	1582	779
2010	273	100		M/D	1/24	1/24	1/24	1/24	1/24	1/24	1/19	1/19	1/19	1/16	1/15	1/15	1/1	12/27	525
2011	226	83	**	.1MM M/D	430 3/18	816 3/17	823 3/16	823 3/16	823 3/16	823 3/13	831 3/12	838 3/11	838 3/10	871 3/10	923 3/5	923 2/27	931 2/27	946 2/18	525
2011	220	05		.1MM	487	692	805	805	805	835	857	979	1374	1374	1665	1801	1844	2141	
2012	274	100		M/D	11/24	3/7	3/7	3/ 7	3/7	3/ 3	3/ 2	3/ 2	3/ 2	3/ 2	2/23	2/22	2/15	2/15	
				.1MM	152	246	246	246	246	325	377	377	377	377	444	519	646	646	273
2013	273	100		M/D	3/11	3/11 744	3/10 900	3/10 915	3/9 930	3/9 930	3/ 7 945	3/ 7 945	3/7 945	3/7 945	2/27 1015	1/11 1102	1/9	2/25	710
2014	273	100		.1MM M/D	566 4/7	4/7	900 4/7	4/6	4/4	4/4	945 4/2	945 4/2	3/31	3/31	3/28	3/21	1134 3/19	1157 3/11	/10
202.	275	100		.1MM	408	676	760	813	984	1069	1074	1159	1224	1309	1538	1553	1708	1940	1102
2015	273	100		M/D	4/3	4/2	4/2	4/2	3/30	4/2	4/2	4/ 3	4/2	4/2	3/30	3/25	3/17	3/14	
204.6		40	ىلە ياد	.1MM	314	520	558	558	580	640	685	892	1098	1098	1158	1280	1355	1532	1140
2016	114	42	**	M/D .1MM	1/10 293	1/ 9 489	1/ 8 503	12/29 560	12/29 560	12/20 580	12/20 580								
*****	*****	****	****														90C *******		******
					1 DAY	2 DAY	3 DAY	4 DAY	5 DAY	6 DAY	7 DAY	8 DAY	9 DAY	10 DAY	15 DAY	20 DAY	25 DAY	30 DAY	
	MEAN		ME	(MM)	38.2	55.1	64.8	72.4	78.9	84.0	87.6	92.3	98.1	101.8	112.8	124.3	136.4	146.6	
	STD.			(MM)	11.8	15.5	18.4	21.9	24.6	25.6	28.0	30.0	33.8	36.3	39.1	43.1	44.9	47.5	
	YEARS			( MM )	45	45	45 100 F	45	45	45	45	45	45	45 106 6	45	45	45	45	
	MAX E YEAR			(MM)	73.0 1984	93.8 1984	100.5 1984	114.2 1976	125.8 1977	136.5 2001	147.0 2001	155.8 1976	183.1 1971	196.6 1971	235.7 1971	238.5 1978	268.7 1978	293.0 1978	
					104	104	104	10/10	1777	2001	2001	10/0	1)/1	1)/1	1)/1	10/0	10/12	10/0	

** NOTE ** VALUE IN FLAG INDICATES YEAR NOT INCLUDED IN ANALYSIS BASED ON % DAYS OPERATIONAL ( <90.0% )

### STATION : HARTINGTON IHD

LATITUDE: 44.43N LONGITUDE: 76.69W ELEVATION (M): 160

ARCHIVE: DLY04 (15/12/1967 - 31/12/2006) DLY44 (01/01/2007 - 22/01/2016)

SNOWMELT MODEL 3 - Western Canada Mountain Basin

CRITICAL PERIOD : 1ST OF MONTH 10 (PRECEDING YEAR) TO THE END OF MONTH 6

NOTE : MODIFIED GUMBEL 12/82

## RETURN PERIOD VALUES (MM) WITH 50% CONFIDENCE LIMITS

REFORM FERIOD VALUES (III) WITH 50% CONFIDENCE EITITS	
***************************************	******

RETURN PERIOD YEARS	1 DAY	2 DAY	3 DAY	4 DAY	5 DAY	
2	36.25+/- 1.09	52.61+/- 1.43	61.74+/- 1.69	68.80+/- 2.02	74.85+/- 2.27	
5	46.65+/- 1.83	-	-	88.18+/- 3.41	-	
10	53.54+/- 2.47			101.01+/- 4.60		
25	62.24+/- 3.33			117.22+/- 6.20		
50	68.70+/- 3.98			129.24+/- 7.42		
100	75.11+/- 4.64	103.72+/- 6.11	122.34+/- 7.24	141.18+/- 8.64	156.21+/- 9.72	
RETURN PERIOD						
YEARS	6 DAY	7 DAY	8 DAY	9 DAY	10 DAY	
2	-	-	-	92.59+/- 3.11	-	
5				122.42+/- 5.24		
10	•	•	•	142.17+/- 7.08		
25	•	•	•	167.13+/- 9.55		
50	•	•	•	185.64+/-11.42	•	
100	164.42+/-10.11	175.57+/-11.06	186.52+/-11.84	204.02+/-13.31	215.74+/-14.32	
RETURN PERIOD						
YEARS	15 DAY	20 DAY	25 DAY	30 DAY		
2			129.03+/- 4.14			
5	•	•	168.70+/- 6.97	•		
10	•	•	194.97+/- 9.42	•		
25	•	•	228.15+/-12.70	•		
50	•	•	252.77+/-15.19	•		
100	235.30+/-15.40	259.51+/-17.00	277.21+/-17.70	295.46+/-18.72		
** WARNING ** : 100 YEAR VALU	MET	EOROLOGICAL SERV	ICE OF CANADA			
			ION, FREQUENCY V			
****					* * * * * * * * * * * * * * * * * * * *	****
STATION : HARTINGTON IHD						NUMBER 6103367
LATITUDE: 44.43N LONGITUDE:	: 76.69W ELEVAT	ION (M): 160				
ARCHIVE: DLY04 (15/12/1967 -	31/12/2006) DLY44	(01/01/2007 - 2	2/01/2016)			

SNOWMELT MODEL 4 - Southern Ontario

CRITICAL PERIOD : 1ST OF MONTH 10 (PRECEDING YEAR) TO THE END OF MONTH 6

NOTE : MODIFIED GUMBEL 12/82

	TOTAL DAYS	. % VALID		TART MAX	1 DAY	2 DAY	3 DAY	4 DAY	5 DAY	6 DAY	7 DAY	8 DAY	9 DAY	10 DAY	15 DAY	20 DAY	25 DAY	30 DAY	MAX SNPK
1968	199	73	**	M/D .1MM	2/2 243	2/ 1 385	1/31 401	3/19 442	1/29 540	3/16 582	3/16 674	3/15 762	3/15 762	3/15 762	3/8 929	3/8 949	3/ 1 969	2/29 989	
1969	273	100		M/D	3/24	3/23	3/22	3/22	3/20	3/20	3/19	3/17	3/17	3/19	3/18	3/13	3/13	3/3	71 5
1970	242	89	**	.1MM M/D	359 12/10	415 12/10	471 12/ 8	516 12/ 8	663 12/ 8	708 12/7	742 3/20	788 3/19	833 3/18	857 3/18	1055 3/19	1182 3/20	1185 3/17	1208 3/12	715
1071	272	100		.1MM	360	398	424	462	472	477	561	643	688	709	933	1200 4/ 8	1347	1368	
1971	273	100		M/D .1MM	4/12 160	4/19 293	4/18 425	4/18 504	4/18 590	4/18 707	4/18 823	4/17 899	4/18 1007	4/17 1083	4/12 1564	4/ 8 1917	4/ 3 2070	3/29 2269	2104
1972	274	100		M/D	2/13	2/13	2/13	4/15	4/14	4/13	4/12	4/11	4/10	4/9	4/4	3/30	3/28	3/21	
1973	273	100		.1MM M/D	294 12/31	334 2/1	372 2/1	482 2/1	573 3/3	682 12/30	799 3/1	875 12/5	926 12/5	972 12/5	1013 1/19	1218 1/16	1342 1/15	1614 12/ 5	966
1973	275	100		.1MM	330	399	409	424	463	486	537	624	654	654	840	1018	1052	1257	596
1974	273	100		M/D	4/3	3/ 3	4/ 1	3/31	3/30	3/29	3/29	3/29	3/29	3/26	2/21	2/19	2/12	3/ 3	
1975	273	100		.1MM M/D	319 3/19	376 3/18	497 3/18	564 3/19	719 3/18	765 3/17	799 3/18	799 3/18	799 3/17	815 3/16	967 3/16	1033 3/15	1096 3/12	1104 3/18	741
1975	275	100		.1MM	357	490	545	609	741	792	884	940	991	1031	1168	1312	1416	1749	797
1976	274	100		M/D	3/27	1/25	3/25	3/24	3/24	3/23	3/21	3/20	3/19	3/19	3/18	2/15	2/10	2/28	
1977	273	100		.1MM M/D	254 3/12	380 3/12	478 3/11	657 3/10	733 3/9	794 3/9	825 3/9	1008 3/ 9	1094 3/ 8	1170 3/4	1211 3/3	1408 2/24	1643 2/24	1793 2/24	1116
1)//	275	100		.1MM	309	467	604	711	818	900	994	1055	1095	1200	1480	1804	1890	2013	1190
1978	273	100		M/D	1/24	1/24	4/18	4/17	4/16	4/16	4/15	4/13	4/11	4/11	4/6	4/ 1	3/27	3/23	
1979	273	100		.1MM M/D	451 1/25	461 12/31	559 12/30	656 12/30	763 12/30	843 12/30	919 3/3	1027 3/ 3	1129 3/ 1	1349 3/ 1	1595 2/28	1910 3/ 1	2348 2/21	2474 2/21	1685
1777	275	100		.1MM	249	447	496	506	506	506	581	613	702	734	966	1186	1328	1600	866
1980	274	100		M/D	3/21	3/20	3/20	3/18	3/17	3/17	3/17	3/17	3/17	3/17	3/9	3/4	3/4	2/24	
1981	273	100		.1MM M/D	357 2/19	475 2/19	512 2/18	562 2/19	646 2/18	683 2/17	698 2/16	698 2/15	698 2/15	698 2/15	767 2/8	790 2/8	790 2/1	817 1/25	377
1901	275	100		.1MM	325	562	664	760	862	916	1011	1034	1034	1034	1454	1454	1561	1721	493
1982	273	100		M/D	1/ 4	3/30	3/29	3/29	12/31	3/25	3/25	3/24	3/24	3/23	3/18	3/12	3/10	3/4	
1983	273	100		.1MM M/D	215 1/10	336 1/10	386 1/ 8	428 1/ 8	436 1/ 8	454 1/8	639 1/8	703 1/ 8	744 1/8	767 12/15	964 12/11	1290 12/23	1391 12/23	1410 12/14	867
1705	275	100		.1MM	303	303	312	312	312	312	312	312	312	357	399	481	481	707	219
1984	274	100		M/D	2/14	2/13	2/13	2/11	2/13	2/13	2/13	2/13	2/11	2/10	2/10	2/5	2/2	1/27	
1985	273	100		.1MM M/D	394 2/23	556 2/22	602 2/21	653 2/21	788 2/21	837 2/21	920 2/21	952 2/21	1017 2/21	1054 2/21	1319 2/21	1328 2/21	1512 2/21	1521 2/21	744
1909	275	100		.1MM	357	558	685	763	809	841	850	886	960	988	1024	1517	1650	1782	857
1986	273	100		M/D	1/19	1/19	3/25	3/25	3/25	3/23	3/23	3/22	3/18	3/18	3/15	3/10	3/4	3/2	
1987	273	100		.1MM M/D	224 11/26	342 2/28	421 2/27	531 11/23	575 11/23	636 11/23	680 2/28	717 2/28	793 2/28	884 2/27	1176 2/22	1496 2/26	1498 2/21	1592 2/21	1093
1907	275	100		.1MM	229	347	374	405	420	420	438	521	630	658	722	817	881	881	516
1988	274	100		M/D	11/28	11/28	11/28	11/28	11/28	11/26	11/28	11/28	11/28	11/28	11/26	3/6	11/28	11/26	
1989	273	100		.1MM M/D	380 1/7	691 3/27	746 3/26	755 3/25	755 3/24	764 3/23	764 3/23	764 3/23	774 3/20	774 3/23	844 3/14	897 3/9	1119 3/4	1271 3/4	533
1707	2,5	100		.1MM	174	277	350	414	501	538	538	538	547	569	810	856	943	974	480
1990	273	100		M/D	2/22	1/17	2/21	2/21	2/19	2/18	1/17	1/17	1/17	1/17	1/17	1/17	1/17	1/17	F 34
1991	273	100		.1MM M/D	305 12/29	366 12/29	387 12/29	387 12/29	401 12/29	410 3/ 1	452 2/28	538 2/28	651 2/28	678 2/28	838 2/20	895 2/18	1163 3/ 1	1290 2/ 5	531
-	-	-					•					• -		, -	, -		, –		

				.1MM	412	412	412	412	412	538	557	557	557	557	701	854	886	1128	388
1992	274	100		M/D	3/26	3/25	3/25	3/24	3/25	3/25	3/25	3/25	3/24	3/24	3/19	3/8	3/6	3/ 3	
1002	272	100		.1MM	306	441	537 1/3	556 1/2	615	688 12/20	761	806	825	825	880	1016	1353	1586	389
1993	273	100		M/D .1MM	1/ 4 482	1/ 3 637	637	1/ 3 637	12/31 657	12/30 687	12/29 764	3/24 784	3/24 824	3/22 866	3/23 1195	3/21 1291	3/16 1329	3/ 8 1411	928
1994	272	100		M/D	4/2	4/2	4/2	4/2	4/1	3/31	3/30	3/29	3/28	3/27	3/22	3/20	3/15	3/10	520
				.1MM	221	267	344	498	534	594	639	685	722	750	1116	1397	1509	1564	981
1995	273	100		M/D	1/14	1/13	1/12	1/12	1/12	1/12	1/12	1/12	3/5	3/4	3/1	2/16	2/17	12/16	
1006	274	100		.1MM	245	333	466	466	466	466	466	466	499	517	536	584	705	763	264
1996	274	100		M/D .1MM	2/20 336	2/20 407	1/16 464	1/16 576	2/20 665	2/20 734	2/20 766	2/20 806	2/20 838	2/19 865	1/14 987	2/ 7 1014	2/19 1186	2/19 1337	694
1997	273	100		M/D	3/25	2/20	2/19	2/18	3/25	3/24	3/25	3/25	3/24	2/18	2/18	2/15	2/18	2/18	004
				.1MM	300	414	, 518	587	657	671	693	716	729	789	973	1018	1078	1133	508
1998	273	100		M/D	1/7	1/7	1/5	1/5	1/5	1/ 5	1/ 2	1/ 5	1/ 5	1/ 5	12/24	12/24	12/24	12/15	
1000	272	100		.1MM	254	274	470	490	509	523	534	561	576	576	691	782	796	827	326
1999	273	100		M/D .1MM	1/23 183	1/22 259	1/21 282	1/21 300	1/20 319	1/18 451	1/17 551	1/17 569	1/16 583	1/16 583	1/16 583	1/16 817	1/17 909	1/17 1110	585
2000	274	100		M/D	2/24	2/23	2/24	2/24	2/23	2/22	2/24	2/23	2/22	2/21	2/20	2/16	2/21	2/16	505
				.1MM	236	301	357	474	538	584	689	754	800	818	868	886	1125	1148	555
2001	273	100		M/D	2/9	12/16	12/16	4/4	4/3	4/2	4/2	4/ 1	3/31	3/30	3/25	3/19	3/15	3/10	
2002	272	100		.1MM	427	474	474	511	593	653	710	729	742	767	872	1282	1472	1663	1300
2002	273	100		M/D .1MM	3/2 246	3/1 273	2/28 296	2/28 296	1/23 313	1/22 350	1/21 359	1/20 382	1/20 382	1/23 461	1/20 548	1/22 693	2/ 6 801	1/22 1000	306
2003	273	100		M/D	3/20	3/20	3/20	3/20	3/20	3/20	3/20	3/20	3/19	3/17	3/15	3/8	3/17	3/12	200
2000	_,,,			.1MM	255	390	472	563	650	816	921	1016	1034	1136	1377	1418	1456	1625	1082
2004	274	100		M/D	12/10	12/10	12/10	12/10	3/ 1	2/29	2/28	2/28	2/27	2/27	12/10	2/25	2/20	2/25	
				.1MM	496	496	496	496	574	638	716	762	798	816	1041	1164	1230	1368	857
2005	273	100		M/D .1MM	12/23 217	12/22 316	12/21 334	12/21 334	2/11 343	12/18 357	12/18 357	12/23 392	12/22 490	2/ 6 536	2/ 1 637	2/ 1 637	12/21 810	12/16 861	293
2006	273	100		M/D	11/29	11/28	11/27	11/27	11/27	11/27	11/27	11/27	490 11/27	11/27	1/4	1/4	12/24	12/22	295
2000	275	100		.1MM	469	688	780	780	780	780	780	780	780	780	871	882	1052	1098	290
2007	273	100		M/D	3/14	3/13	3/12	3/11	3/10	3/10	3/10	3/10	3/10	3/10	3/ 1	2/27	2/27	2/21	
				.1MM	166	258	317	376	432	450	450	450	460	460	530	562	629	670	456
2008	274	100		M/D .1MM	12/23	12/22	1/ 7 456	1/ 6 524	1/ 7 571	1/6	4/1	3/31 813	3/30	3/30	3/25	12/23 1212	3/14	3/11	1090
2009	273	100		M/D	373 2/11	414 2/11	2/10	524 12/24	$\frac{571}{12/24}$	640 12/24	730 3/5	3/5	841 3/ 6	862 3/ 6	1013 2/25	2/25	1438 2/25	1482 2/10	1090
2005	275	100		.1MM	255	369	419	457	552	581	590	590	603	699	887	1059	1059	1334	811
2010	273	100		M/D	1/24	1/24	1/24	1/24	1/24	1/24	1/19	1/19	1/17	1/16	1/14	1/14	1/ 1	12/27	
		~ ~		.1MM	494	780	794	794	794	794	798	812	835	853	922	922	926	958	392
2011	226	83	**	M/D .1MM	3/10 386	3/10 461	3/10 484	3/10 511	3/10 539	3/5 703	3/5 778	3/10 809	3/10 901	3/10 937	3/ 5 1254	3/ 4 1396	3/10 1569	3/5 1886	
2012	274	100		M/D	11/24	1/31	484 1/31	1/23	1/22	1/23	1/17	1/17	1/23	1/23	1/17	1/16	1/12	1/ 6	
-01-	-/ 1	200		.1MM	152	157	157	257	262	262	273	286	359	419	499	572	625	679	170
2013	273	100		M/D	1/30	1/29	1/29	3/9	3/8	3/8	3/ 6	3/ 6	3/ 5	3/ 6	2/26	1/12	1/ 8	1/ 6	
				.1MM	347	460	524	542	584	606	643	666	675	689	770	968	1096	1115	595
2014	273	100		M/D	4/7	4/7	4/7	4/7	4/4	4/4	4/4	4/3	4/2	4/1	3/27	3/22	3/18	3/14	1054
2015	273	100		.1MM M/D	367 4/10	486 4/9	559 4/8	711 4/7	789 4/6	862 4/5	1014 4/4	1060 4/ 3	1115 4/ 2	1179 4/ 1	1452 3/29	1479 3/24	1698 3/17	1798 3/12	1054
2015	2,5	100		.1MM	250	401	447	511	534	580	621	749	928	965	1070	1220	1302	1554	1067
2016	114	42	**	M/D	12/29	1/7	1/6	1/6	1/ 6	1/3	1/2	1/2			12/29	12/20	12/20	12/20	
				.1MM	34	54	77	77	77	91	95	95	109	116	148	168	168	181	
*****	****	****	****	******	******	*****	******	******	******	******	******	******	******	******	******	******	******	******	******

1 DAY 2 DAY 3 DAY 4 DAY 5 DAY 6 DAY 7 DAY 8 DAY 9 DAY 10 DAY 15 DAY 20 DAY 25 DAY 30 DAY

STD. DEV. (I YEARS ANALYSED	YM) 30.7 41.3 47.3 YM) 9.2 12.7 13.3 45 45 45 YM) 73.0 93.8 100.5 1984 1984 1984	13.7         15.7           45         45           114.2         125.8	16.7 18.7 2 45 45 136.5 147.0 15	2.2 76.4 80. 0.1 20.9 22. 45 45 4 5.8 183.1 196. 976 1971 197	7 29.3 34.7 38.6 41.3 5 45 45 45 45 6 235.7 238.5 268.7 293.0
** NOTE ** VALUE IN	FLAG INDICATES YEAR NOT	INCLUDED IN ANAL	YSIS BASED ON %	DAYS OPERATIONAL	( <90.0% )
		EOROLOGICAL SERV		ALUES	
**************************************	PREPARED BY	THE ENGINEERING	G CLIMATE SERVICE	S UNIT	**************************************
LATITUDE: 44.43N LON	GITUDE: 76.69W ELEVAT	ION (M): 160			
ARCHIVE: DLY04 (15/12/	1967 - 31/12/2006) DLY44	(01/01/2007 - 2	22/01/2016)		
SNOWMELT MODEL 4 - Sou	thern Ontario				
CRITICAL PERIOD : 1ST	OF MONTH 10 (PRECEDING	YEAR) TO THE END	OF MONTH 6		NOTE : MODIFIED GUMBEL 12/82
*****		N PERIOD VALUES			*******
RETURN PERIOD YEARS	1 DAY	2 DAY	3 DAY	4 DAY	5 DAY
2 5 10	29.23+/- 0.85 37.38+/- 1.43 42.77+/- 1.93	50.45+/- 1.98	45.16+/- 1.23 56.93+/- 2.07 64.72+/- 2.79	62.64+/- 2.13	69.52+/- 2.43
25	49.59+/- 2.61	67.30+/- 3.60	74.56+/- 3.77	80.80+/- 3.88	90.25+/- 4.43
50 100	54.65+/- 3.12 59.67+/- 3.64		81.87+/- 4.51 89.11+/- 5.25		98.84+/- 5.30 107.36+/- 6.17
RETURN PERIOD					
YEARS	6 DAY	7 DAY	8 DAY	9 DAY	10 DAY
2	60.14+/- 1.54		68.89+/- 1.85		
5 10		81.39+/- 2.90 92.31+/- 3.91			
25		106.10+/- 5.28			
50	-	116.33+/- 6.31	-	-	-
100		126.49+/- 7.36			
RETURN PERIOD					
YEARS	15 DAY	20 DAY	25 DAY	30 DAY	
2	91.18+/- 2.70	104.38+/- 3.20	115.50+/- 3.56	127.13+/- 3.81	
5	117.07+/- 4.55	135.05+/- 5.39	149.63+/- 6.00	163.62+/- 6.41	
10		155.36+/- 7.28			
25	155.88+/- 8.29	181.02+/- 9.82	200./8+/-10.92	218.30+/-11.68	

#### 171.95+/- 9.92 200.05+/-11.75 221.96+/-13.07 240.95+/-13.98 187.90+/-11.55 218.94+/-13.68 242.99+/-15.23 263.43+/-16.28

### METEOROLOGICAL SERVICE OF CANADA RAIN+SNOWMELT DEPTH, DURATION, FREQUENCY VALUES PREPARED BY THE ENGINEERING CLIMATE SERVICES UNIT

STATION NUMBER 6103367

LATITUDE: 44.43N LONGITUDE: 76.69W ELEVATION (M): 160

ARCHIVE: DLY04 (15/12/1967 - 31/12/2006) DLY44 (01/01/2007 - 22/01/2016)

SNOWMELT MODEL 5 - Modification of Model 4

.1MM

.1MM

.1MM

.1MM

.1MM

.1MM

M/D

M/D

M/D

M/D

M/D

268

3/21

496

2/19

381

3/31

404

2/2

2/14

558

380

525

3/20

747

2/18

3/30

628

601

2/2

533

2/13

794

565

3/20

747

784

641

2/2

533

876

2/13

2/17

3/30

579

3/18

765

2/16

952

641

552

2/11

987

3/30

1/31

633

812

952

3/17

2/16

3/30

1/30

562

2/13

1112

641

CRITICAL PERIOD : 1ST OF MONTH 10 (PRECEDING YEAR) TO THE END OF MONTH 6

NOTE : MODIFIED GUMBEL 12/82

ΜΔΧ

892

491

637

1133

260

828

TOTAL % START

STATION : HARTINGTON IHD

	TUTAL	_ /o	2	IAKI															MAX
YR	DAYS	VALID	FLAG	MAX	1 DAY	2 DAY	3 DAY	4 DAY	5 DAY	6 DAY	7 DAY	8 DAY	9 DAY	10 DAY	15 DAY	20 DAY	25 DAY	30 DAY	SNPK
1968	198	72	**	M/D	2/2	2/1	2/1	3/16	3/15	3/15	3/15	3/15	3/15	3/10	3/9	3/9	3/9	•	
				.1MM	303	454	454	605	648	648	648	648	648	740	840	899	899	899	
1969	273	100		M/D	3/24	3/24	3/22	3/21	3/20	3/20	3/19	3/18	3/17	3/17	3/18	3/17	3/15	3/15	
				.1MM	466	543	567	648	826	902	921	981	1003	1003	1162	1457	1466	1466	735
1970	242	89	**	M/D	12/10	4/8	4/7	4/6	4/6	4/7	4/6	4/2	4/ 1	4/ 1	3/26	3/21	3/19		
				.1MM	340	526	627	658	658	725	756	862	871	871	1018	1424	1617	1617	
1971	273	100		M/D	4/19	4/19	4/18	4/18	4/17	4/16	4/15	4/12	4/12	4/12	4/9	4/2	3/29	3/29	
				.1MM	365	654	897	1084	1195	1358	1439	1552	1840	2027	2318	2422	2511	2511	2336
1972	274	100		M/D	2/13	4/14	4/13	4/12	4/11	4/13	4/12	4/11	4/10	4/10	4/10	3/30	3/29	3/21	
				.1MM	284	420	600	762	914	1064	1225	1377	1399	1399	1399	1578	1601	1872	1224
1973	273	100		M/D	3/7	1/18	1/17	3/4	3/3	3/2	3/ 1	3/ 1	3/ 1	3/ 1	1/16	1/16	1/16	12/26	
				.1MM	261	389	523	688	769	772	797	797	797	797	818	1136	1139	1179	896
1974	273	100		M/D	4/3	4/2	4/ 1	3/31	3/30	3/29	3/29	3/29	3/29	3/29	2/21	2/19	2/13	3/5	
				.1MM	431	496	664	, 746	896	942	961	961	961	, 961	1060	1098	1109		732
1975	273	100		M/D	3/19	3/18	3/18	3/17	3/18	3/18	3/18	3/18	3/17	3/17	3/12	3/12	3/12		-
_	_			.1MM	453	596	687	718	827	877	984	1065	1096	1096	1165	1227	1290		866
1976	274	100		M/D	3/20	3/24	3/24	3/24	3/24	3/20	3/20	3/20	3/19	3/19	3/13	3/12	3/3	2/26	
	-/ .			.1MM	344	657	840	1022	1022	1078	1261	1443	1519	1519	1539	1587	1917	2193	1254
1977	273	100		M/D	3/12	3/11	3/10	3/9	3/9	3/7	3/6	3/5	3/4	3/3	2/26	2/24	3/4		
1377	275	100		.1MM	398	672	947	1141	1141	1152	1203	1325	1589	1602	1712	1948	2009	2099	1327
1978	273	100		M/D	1/24	4/11	4/11	4/11	4/11	4/11	4/11	4/11	4/11	4/11	4/4	3/29	3/27	3/20	1527
10/10	275	100		.1MM	491	526	810	921	1022	1205	1327	1327	1327	1327	1763	2220	2457	2784	1856
1979	273	100				$\frac{320}{12/31}$				3/3	$\frac{1327}{3/3}$	3/3	$\frac{1327}{3/1}$	3/1	2/23		2/24		1020
13/3	2/3	TOO		M/D	1/ 1	12/21	12/30	3/3	3/3	5/ 5	5/ 5	5/5	5/ I	5/ I	2/23	3/ 1	2/24	2/21	

716

3/17

2/16

3/30

1/30

562

2/13

1180

812

952

641

869

3/17

812

2/16

952

3/25

895

1/30

562

2/11

1306

905

3/17

812

2/16

3/24

1/30

2/11

1373

952

950

562

949

3/17

812

2/11

1059

3/24

1/30

2/11

1373

990

562

985

3/17

812

2/10

1289

3/24

1/25

990

581

2/11

1373

1132

3/17

2/10

1289

3/17

1197

1/23

2/3

1379

623

812

1332

3/17

2/ 1

1359

3/12

1555

1/30

632

2/2

1506

812

1387

3/17

812

1/26

1538

3/11

1686

1/10

1000

1/24

1549

1593

3/17

1/26

1538

3/11

1686

1/10

1000

1/24

1616

812

50 100

1980

1984

1981 273

1982 273

1983 273 100

274 100

274

100

100

100

1985	273	100		M/D	2/23	2/22	2/22	2/21	2/21	2/21	2/21	2/22	2/21	2/21	2/22	2/22	2/21	2/13	000
1986	273	100		.1MM M/D	421 3/26	700 3/25	842 1/18	932 3/23	950 3/23	950 3/23	950 3/23	980 3/19	1070 3/18	1143 3/18	1145 3/13	1797 3/10	1975 3/10	2003 3/10	908
4007		400		.1MM	384	603	628	709	709	709	709	976	1113	1113	1389	1493	1493	1493	1113
1987	273	100		M/D	3/8	3/7 374	11/24 385	11/23 420	11/23 420	11/23 420	11/23	3/1	2/28	2/28	2/28	2/28	2/28 1033	2/28	680
1988	274	100		.1MM M/D	228 3/25	$\frac{574}{11/28}$	3/24	3/23	3/23	3/23	420 3/23	602 3/23	722 3/23	722 3/23	722 11/28	896 3/7	1035	1033 11/28	000
1900	2/4	100		.1MM	456	710	807	877	877	877	877	877	877	877	933	1165	1240	1369	658
1989	273	100		M/D	3/27	3/27	3/26	3/25	3/24	3/24	3/24	3/24	3/24	3/24	3/14	3/14	3/4	3/4	
				.1MM	324	539	676	768	865	865	865	865	905	905	1127	1167	1187	1227	795
1990	273	100		M/D	1/17	1/17	1/17	1/17	1/17	1/17	1/17	1/17	1/17	1/17	1/17	1/ 9	1/17	1/17	
				.1MM	329	494	494	494	494	494	534	647	797	797	806	881	1071	1285	540
1991	273	100		M/D	12/29	3/1	2/3	2/3	2/3	3/1	3/1	3/1	3/1	3/1	2/20	2/18	3/1	2/3	402
1992	274	100		.1MM M/D	390 3/26	402 3/25	484 3/8	511 3/7	511 3/ 6	602 3/6	602 3/6	602 3/25	602 3/25	602 3/25	742 3/25	854 3/7	950 3/7	1165 3/ 6	492
1992	274	100		.1MM	388	468	588	727	811	811	811	848	894	903	1093	1196	1502	1733	694
1993	273	100		M/D	1/4	1/3	3/27	3/26	3/25	3/24	3/24	3/24	3/24	3/24	3/24	3/21	3/16	3/8	004
_	_			.1MM	, 553	667	718	792	883	974	1030	1030	1030	1070	1290	1299	1319	1487	1016
1994	272	100		M/D	2/20	3/22	3/22	3/21	3/21	3/21	3/21	3/21	3/21	3/22	3/21	3/21	3/15	3/15	
				.1MM	262	420	585	665	665	665	675	748	803	832	1297	1407	1472	1509	1029
1995	273	100		M/D	3/13	1/13	1/12	1/12	1/12	1/12	3/7	3/6	3/5	3/ 5	3/5	3/5	2/19	2/15	
1000	274	100		.1MM	292	418	485	485	485	485	568	631	671	705	705	705	796	806	409
1996	274	100		M/D	11/11	1/18 465	1/16 596	1/16 700	2/20 789	2/20 908	2/19 926	2/20	2/20 975	2/19 993	1/16	2/8	2/19 1264	2/19	854
1997	273	100		.1MM M/D	395 3/25	3/28	3/27	3/27	3/25	3/25	3/25	948 3/25	3/25	3/25	1042 3/25	1146 3/14	3/14	1471 3/ 1	004
1997	275	100		.1MM	278	477	660	742	984	1066	1066	1103	1197	1197	1197	1220	1220	1264	771
1998	273	100		M/D	1/7	3/8	1/5	1/5	1/3	1/2	1/2	1/2	1/2	1/2	2/25	2/18	2/17	2/25	,, -
-	_			.1MM	, 254	380	466	486	561	, 597	, 617	, 627	, 627	, 627	811	912	1074	1206	395
1999	273	100		M/D	1/23	2/28	2/10	2/28	3/17	1/18	1/17	1/17	1/17	1/17	2/2	1/17	1/18	1/17	
				.1MM	238	292	324	332	353	432	519	519	519	519	554	744	880	1069	585
2000	274	100		M/D	2/24	2/23	2/23	2/23	2/23	2/23	2/23	2/23	2/23	2/23	2/23	2/23	2/23	2/23	64.0
2001	272	100		.1MM	328	484	540	687	837	837	837	837	837	837	882	882	1112	1153	610
2001	273	100		M/D .1MM	2/9 408	12/16 538	4/6 783	4/5 994	4/ 4 1195	4/ 3 1323	4/ 2 1405	4/ 2 1405	4/ 2 1405	3/30 1425	3/30 1425	3/21 1783	3/15 1847	3/12 1933	1546
2002	273	100		M/D	3/2	2/20	1/26	3/27	1/23	1/23	2/15	2/15	1/23	1/23	2/19	2/15	2/10	1/23	1040
2002	275	-00		.1MM	216	348	400	406	430	519	542	542	547	607	722	896	968	1221	467
2003	273	100		M/D	3/17	3/20	3/20	3/20	3/20	3/17	3/17	3/17	3/17	3/16	3/16	3/16	3/17	3/16	
				.1MM	310	472	668	851	1007	1107	1290	1446	1537	1628	1628	1628	1762	1853	1311
2004	274	100		M/D	12/10	12/10	3/3	3/2	3/ 1	3/ 1	2/29	2/28	2/28	2/28	2/29	2/28	3/ 1	2/28	
2005	272	100		.1MM	480	521	606	798	949	1022	1077	1086	1086	1086	1191	1237	1406	1471	930
2005	273	100		M/D	1/13 236	2/14	2/14 368	12/30	12/30	12/30 475	12/30	12/30	2/7	2/7	12/30 778	12/30	12/22	12/22 1044	384
2006	273	100		.1MM M/D	236 11/29	350 11/28	11/27	420 11/27	475 11/27	475 11/27	475 11/27	475 1/11	624 1/12	642 1/11	1/4	778 1/4	1044 1/ 4	1044	564
2000	275	100		.1MM	428	730	780	780	780	780	780	789	793	871	957	1039	1130	1289	290
2007	273	100		M/D	4/12	3/13	3/12	3/11	3/10	3/10	3/10	3/10	3/10	3/10	3/10	3/3	3/ 1	3/1	250
				.1MM	, 208	408	482	573	583	583	583	583	583	583	659	687	707	707	535
2008	274	100		M/D	12/23	1/ 7	1/ 6	1/ 5	4/ 1	4/ 1	3/31	3/31	3/31	3/28	3/26	3/18	3/15	3/8	
				.1MM	482	573	705	725	772	898	1018	1018	1018	1054	1164	1483	1634	1644	1251
2009	273	100		M/D	2/11	2/11	3/6	3/5	3/6	3/ 6	3/ 5	3/ 5	3/ 5	2/27	2/26	12/ 9	2/11	2/11	
2010	272	100		.1MM	369	556	658	664	738	770	776	776	776	820	990 1/15	1006	1289	1547	748
2010	273	100		M/D .1MM	1/24 430	1/24 826	1/24 835	1/24 835	1/24 835	1/24 835	1/19 844	1/19 853	1/19 853	1/16 890	1/15 954	1/15 954	1/ 1 963	12/27 981	483
2011	226	83	**	M/D	3/10	3/10	3/16	3/16	3/16	3/5	3/5	3/10	3/10	3/10	3/5	2/27	2/27	2/18	405
				.1MM	404	543	659	659	659	712	851	974	1266	1266	1574	1715	1834	1971	
						. –										-	. –		

2012       274       100         2013       273       100         2014       273       100         2015       273       100         2016       114       42       **	M/D         3/11         3           .1MM         483	152         152           3/10         3/10           657         812           4/7         4/6           578         642           4/2         4/2           540         586           1/9         1/8           484         498	1/23 1/23 225 225 3/10 3/9 830 849 4/4 4/4 780 918 4/2 3/30 586 613 1/8 1/8 498 498 ****	3/ 2 1/26 249 253 3/ 9 3/ 7 849 867 4/ 4 4/ 2 918 1027 4/ 2 4/ 2 686 741 1/ 8 1/ 8 498 498	253       280       3         3/7       3/7       3/         867       867       8         4/1       3/31       3/         1100       1210       12         4/2       4/2       4/         890       890       8         1/8       1/8       1/         498       498       498	223       1/23       1/17         368       423       503         7       2/27       1/12         367       944       1097         363       3/28       3/20         238       1469       1551         2       3/26       3/21         390       1037       1145         48       12/29       12/29         498       560       560         560       560	558         595           1/9         2/27           1134         1147           3/15         3/10           1743         1926           3/10         3/11           1303         1571           12/20         12/20           580         580	208 703 1072 1140 ******				
MEAN EXTREME STD. DEV. YEARS ANALYSED MAX EXTREME YEAR	(MM) 36.5 5 (MM) 9.8 1 45 (MM) 73.0 9	DAY 3 DAY 53.2 63.2 13.8 16.7 45 45 93.8 100.5 1984 1984	71.1 77.5 20.0 22.7 45 45	82.0 87.1 25.0 27.7 45 45	29.5 32.2 33 45 45 155.8 184.0 202	9.0 109.9 123.2 3.4 36.2 41.3 45 45 45	134.5 145.4 42.1 45.4 45 45 268.7 293.0					
<pre>** NOTE ** VALUE IN FLAG INDICATES YEAR NOT INCLUDED IN ANALYSIS BASED ON % DAYS OPERATIONAL ( &lt;90.0% )</pre>												
CRITICAL PERIOD : 1		RETURN	PERIOD VALUES	(MM) WITH 50%	CONFIDENCE LIMI	rs	ODIFIED GUMBEL 1					
RETURN PERIOD YEARS 2 5 10 25 50	34.9 43.5 49.2 56.5	DAY 94+/- 0.90 57+/- 1.52 28+/- 2.05 50+/- 2.76		75.20+/- 2.5 84.96+/- 3.5 97.30+/- 4.7	9 85.51+/- 3.11 0 97.22+/- 4.20 2 112.02+/- 5.60	l 93.89+/- 3.53 9 107.20+/- 4.77 5 124.02+/- 6.43						
50 100		86+/- 3.31 17+/- 3.85			5 123.00+/- 6.77 8 133.89+/- 7.89	•						

5 10 25 50 100	114.61+/- 5.24 133.06+/- 7.06 146.75+/- 8.45	107.01+/- 4.30 123.20+/- 5.80 143.65+/- 7.83 158.83+/- 9.36 173.89+/-10.91	130.30+/- 6.19 152.12+/- 8.35 168.31+/- 9.99	138.39+/- 6.75 162.18+/- 9.10 179.83+/-10.89	142.69+/- 7.02 167.41+/- 9.46 185.76+/-11.32
RETURN PERIOD YEARS	15 DAY	20 DAY	25 DAY	30 DAY	
2 5 10 25 50 100	135.91+/- 5.62 157.09+/- 7.59 183.84+/-10.24 203.69+/-12.25	116.38+/- 3.81 152.85+/- 6.41 177.00+/- 8.66 207.51+/-11.67 230.14+/-13.97 252.61+/-16.27	164.86+/- 6.54 189.51+/- 8.84 220.66+/-11.92 243.76+/-14.26	178.08+/- 7.05 204.62+/- 9.52 238.16+/-12.83 263.04+/-15.35	

** WARNING ** : 100 YEAR VALUES IN 1971 BASED ON 15 DAYS ACCUMULATION

Appendix C-2: Sinusoidal Hourly Snowmelt + Rainfall Runoff for 1%, 3-Day AEP



Time (hr)	Fraction	Snowmelt (mm/hr)
1	0.260	1.67
2	0.500	1.72
3	0.707	1.77
4	0.866	1.81
5	0.966	1.83
6	1.000	1.84
7	0.966	1.83
8	0.866	1.81
9	0.707	1.77
10	0.500	1.72
11	0.260	1.67
12	0.000	1.60
13	-0.260	1.54
14	-0.500	1.49
15	-0.707	1.44
16	-0.866	1.40
17	-0.966	1.38
18	-1.000	1.37
19	-0.966	1.38
20	-0.866	1.40
21	-0.707	1.44
22	-0.500	1.49
23	-0.260	1.54
24	0.000	1.60

	100-Yr	]	
	3	# of days	
	115.5	total depth from Harti	ngton AES Frequency Val
	Daily snowmelt +rain=	38.5	mm
	Daily min temp	0.9	]
April:	Daily avg Daily max temp	6.3 11.6	-
		11.0	
	Average hourly snowmelt+rain	1.60	mm
	Center	1.60	mm
	Amplitude	0.24	mm
epeat 24	4-hr pattern for 3 days in HEC-HM	IS hyetograph.	

Appendix D: Historical Maximum Snow Water Content and Cumulative Runoff from Hartington Climate Data & Schroeter Snowmelt Routine



Year	Maximum SWC (mm)	Cumulative Snowmelt + Rain Runoff (mm)
1975	92	342
1976	190	426
1977	83	278
1978	205	361
1979	112	411
1980	23	367
1981	53	355
1982	79	239
1983	15	439
1984	101	465
1985	46	341
1986	68	299
1987	47	321
1988	56	423
1989	89	289
1990	57	418
1991	34	436
1992	62	297
1993	98	366
1994	67	302
1994	32	362
1995	127	350
	89	
1997		374
1998	23	307
1999	35	258
2000	27	382
2001	154	304
2002	64	432
2003	204	394
2004	221	527
2005	28	367
2006	26	388
2007	19	342
2008	131	373
2009	104	355
2010	45	313
2011	93	391
2012	45	319
2013	48	289
2014	80	351
2015	49	214
2016	73	396
2017	63	400
2018	65	395
2019	100	418
2020	31	395
2021	42	277
2022	56	316
2023	38	397

Appendix E: Federal Climate Data Portal: ΔT Adjustment



time	rcp26_tg_mean_p10	rcp26_tg_mean_p50	rcp26_tg_mean_p90	rcp45_tg_mean_p10	rcp45_tg_mean_p50	rcp45_tg_mean_p90	rcp85_tg_mean_p10	rcp85_tg_mean_p50	rcp85_tg_mean_p90	rcp26_tg_mean_delta7100_p10	rcp26_tg_mean_delta7100_p50	rcp26_tg_mean_delta7100_p90	rcp45_tg_mean_delta7100_p10	rcp45_tg_mean_delta7100_p50	rcp45_tg_mean_delta7100_p90	rcp85_tg_mean_delta7100_p10	rcp85_tg_mean_delta7100_p50	rcp85_tg_mean_delta7100_p90
1/1/1951	6.9	7	7.2	6.9	7	7.2	6.9	7	7.2	-0.6	-0.3	-0.1	-0.6	-0.3	-0.1	-0.6	-0.3	-0.1
1/1/1961	7	7.1	7.2	7	7.1	7.2	7	7.1	7.2	-0.5	-0.3	-0.1	-0.5	-0.3	-0.1	-0.5	-0.3	-0.1
1/1/1971	7.2	7.3	7.5	7.2	7.3	7.5	7.2	7.3	7.5	0	0	0	0	0	0	0	0	0
1/1/1981	7.5	7.7	7.9	7.5	7.7	7.9	7.5	7.7	7.9	0.2	0.3	0.4	0.2	0.4	0.5	0.2	0.3	0.5
1/1/1991	7.9	8	8.4	7.8	8.1	8.4	7.9	8.2	8.4	0.5	0.7	1	0.5	0.8	1	0.6	0.8	1
1/1/2001	8.2	8.4	9	8.2	8.6	9	8.2	8.7	9	0.8	1.2	1.6	0.7	1.2	1.6	0.9	1.3	1.6
1/1/2011	8.3	8.8	9.5	8.4	9	9.7	8.5	9.2	9.8	1	1.4	2.1	1.1	1.7	2.3	1.3	1.8	2.4
1/1/2021	8.5	9.2	10	8.8	9.3	10.2	8.9	9.6	10.3	1.2	1.8	2.6	1.4	2	2.9	1.7	2.2	3
1/1/2031	8.5	9.4	10.3	9.1	9.7	10.8	9.4	10.2	11.3	1.3	2	2.9	1.7	2.4	3.4	2.2	2.8	3.9
1/1/2041	8.6	9.4	10.6	9.2	10.1	11.3	10.1	10.9	12.2	1.3	2.1	3.3	1.8	2.8	4	2.8	3.5	4.8
1/1/2051	8.6	9.4	10.8	9.3	10.3	11.8	10.8	11.6	13.3	1.2	2.1	3.4	1.9	2.9	4.5	3.4	4.2	6
1/1/2061	8.6	9.4	10.8	9.4	10.4	12.2	11.4	12.4	14.2	1.2	2.1	3.4	2	3.2	4.8	4.1	5	6.8
1/1/2071	8.6	9.4	10.7	9.5	10.6	12.1	11.8	13.1	15.1	1.2	2.1	3.3	2.2	3.3	4.7	4.6	5.7	7.7

Appendix F: Kingston Environment Canada IDFs



Environment and Climate Change Canada Environnement et Changement climatique Canada Short Duration Rainfall Intensity-Duration-Frequency Data Données sur l'intensité, la durée et la fréquence des chutes de pluie de courte durée Gumbel - Method of moments/Méthode des moments 2022/10/31 KINGSTON PUMPING STATION ON 6104175 (composite) Latitude: 44 14'N Longitude: 76 29'W Elevation/Altitude: 76 m Years/Années : 1914 - 2007 # Years/Années : 63 _____ Table 1 : Annual Maximum (mm)/Maximum annuel (mm) Year 5 min 10 min 15 min 30 min 1 h 2 h 12 h 24 h 6 h Année 1914 5.8 7.9 9.7 12.2 19.3 25.4 29.2 37.1 40.1 45.2 1915 10.2 28.2 3.6 5.3 7.6 16.0 58.9 65.0 8.1 18.0 25.9 45.0 1921 16.0 17.0 18.3 18.3 27.9 20.6 22.6 32.3 36.1 1922 4.8 6.9 9.7 15.7 32.3 48.8 1926 13.0 18.0 23.4 54.6 54.6 57.9 8.6 33.5 1927 8.6 13.0 16.5 21.8 39.1 39.9 40.1 40.1 49.8 1928 10.9 16.8 22.6 29.0 34.8 35.8 41.1 41.7 48.0 39.6 1929 10.7 14.7 14.7 18.8 23.9 28.4 30.2 52.8 1930 8.4 11.4 11.4 13.2 15.7 17.0 21.8 34.8 44.4 27.7 1931 6.9 10.7 14.2 17.5 18.8 25.9 39.4 39.4 1932 8.9 26.9 15.7 18.3 21.3 21.3 21.3 34.3 50.8 11.2 47.0 1933 7.1 12.2 14.7 15.5 18.3 38.4 51.1 15.2 11.4 1934 5.1 9.1 18.5 20.1 26.7 40.4 45.0 1935 14.2 19.8 34.5 40.4 59.4 10.2 55.4 59.4 64.5 1936 4.6 8.1 8.4 10.9 15.0 22.6 32.8 47.5 49.5 1937 10.2 15.0 19.8 28.7 42.4 52.3 62.5 78.7 79.8 1938 8.9 13.0 13.0 13.0 19.0 33.5 42.7 57.9 42.7 1961 5.3 9.4 13.2 13.2 13.2 20.6 32.3 34.5 35.8 24.1 25.4 1962 10.7 13.2 19.8 24.4 30.2 40.6 42.2 1963 7.6 8.9 12.4 17.8 21.6 27.9 32.3 32.8 39.6 23.6 1964 10.4 16.3 32.8 4.1 6.3 6.6 7.6 33.3 26.2 1965 5.6 8.1 9.4 16.0 23.4 26.7 33.5 37.3 1966 5.1 46.7 9.1 10.9 15.0 23.6 24.1 47.0 47.0 37.1 1967 14.2 16.3 24.9 35.8 37.1 51.3 12.4 46.2 1968 10.4 13.2 16.0 19.3 21.1 22.9 30.2 43.7 45.0 1969 10.4 19.6 47.8 6.9 8.4 9.9 15.7 32.0 39.9 1970 12.4 21.6 24.1 26.7 26.9 28.2 28.4 5.6 9.1 15.2 1971 8.1 10.2 10.7 14.0 17.5 25.4 30.0 47.0 1972 9.7 11.4 12.7 15.5 20.8 36.1 54.1 79.2 79.5 8.6 10.4 12.2 24.1 26.9 33.5 34.8 1973 16.5 43.4 1974 4.8 6.3 7.1 8.9 14.0 17.3 20.8 23.9 7.6 13.2 1975 15.2 16.3 17.0 22.6 40.1 52.1 7.6 65.0 1976 35.8 37.1 10.9 14.5 16.0 16.3 27.4 38.4 41.7 1977 8.1 9.7 11.4 13.0 14.2 19.0 42.2 45.2 45.5 7.4 10.0 1978 12.8 16.4 17.1 23.8 36.0 40.2 43.0

1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2005 2006 2007	$\begin{array}{c} 7.4\\ 8.6\\ 6.4\\ 9.3\\ 15.4\\ 15.8\\ 7.0\\ 4.0\\ 6.6\\ 3.8\\ 7.4\\ 11.4\\ 7.6\\ 8.0\\ 11.1\\ 4.4\\ 5.7\\ 9.4\\ 10.5\\ 7.7\\ 8.0\\ 8.4\\ 9.2\\ 9.0\\ 7.1\end{array}$	$\begin{array}{c} 10.2\\ 11.7\\ 8.1\\ 14.4\\ 18.2\\ 6.6\\ 19.8\\ 9.0\\ 6.5\\ 10.3\\ 6.6\\ 10.8\\ 12.7\\ 10.8\\ 12.7\\ 10.8\\ 12.8\\ 14.1\\ 5.7\\ 7.7\\ 13.2\\ 14.1\\ 9.8\\ 8.1\\ 8.8\\ 10.0\\ 15.4\\ 13.8\\ 11.6\\ 12.0 \end{array}$	$12.4 \\ 14.8 \\ 9.5 \\ 15.8 \\ 18.6 \\ 7.1 \\ 26.7 \\ 9.7 \\ 9.7 \\ 12.8 \\ 8.4 \\ 14.3 \\ 13.1 \\ 14.2 \\ 16.0 \\ 16.4 \\ 7.2 \\ 8.5 \\ 15.5 \\ 16.6 \\ 10.8 \\ 9.8 \\ 11.9 \\ 10.4 \\ 17.7 \\ 14.9 \\ 12.9 \\ 13.4 \\ 13.4 \\ 13.4 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 14.2 \\ 1$	$\begin{array}{c} 14.1\\ 19.9\\ 17.6\\ 16.0\\ 21.0\\ 10.4\\ 34.3\\ 15.0\\ 10.5\\ 16.2\\ 11.5\\ 14.3\\ 19.3\\ 24.0\\ 24.6\\ 20.3\\ 8.5\\ 10.9\\ 21.2\\ 19.0\\ 11.4\\ 19.3\\ 12.6\\ 25.1\\ 20.0\\ 15.7\\ 14.5 \end{array}$	22.4 28.0 28.8 16.0 26.9 15.7 39.0 19.8 14.3 25.5 12.0 16.5 33.9 35.1 28.6 25.6 13.0 21.2 20.8 16.2 17.8 20.8 15.2 28.0 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 25.6 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 15.2 20.8 21.9 20.8 21.9 20.8 22.8 15.2 20.8 22.8 19.6 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8	37.9 43.9 39.3 23.7 34.1 22.5 26.7 16.8 28.1 15.2 20.7 34.6 41.9 31.7 29.4 18.0 29.4 18.3 22.0 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2	100.6 44.8 56.3 39.7 50.8 30.6 53.6 50.2 30.0 28.8 30.5 37.9 37.4 44.7 32.5 47.7 33.7 28.0 33.1 28.9 28.3 28.1 27.4 26.4 38.2 49.2 28.8 24.4	$\begin{array}{c} 126.0\\ 44.8\\ 57.0\\ 45.0\\ 55.4\\ 38.6\\ 53.6\\ 65.3\\ 48.4\\ 28.8\\ 33.7\\ 37.6\\ 46.2\\ 32.9\\ 51.8\\ 49.2\\ 32.9\\ 51.8\\ 49.2\\ 33.8\\ 34.0\\ 32.9\\ 41.2\\ 35.7\\ 36.9\\ 43.2\\ 63.2\\ 35.0\\ 34.5\\ \end{array}$	$127.1 \\ 53.0 \\ 59.1 \\ 45.0 \\ 70.6 \\ 45.4 \\ 53.7 \\ 74.2 \\ 56.6 \\ 30.2 \\ 42.0 \\ 41.4 \\ 46.2 \\ 64.6 \\ 52.8 \\ 56.1 \\ 44.5 \\ 39.2 \\ 35.0 \\ 44.5 \\ 39.2 \\ 35.0 \\ 44.8 \\ 43.1 \\ 45.0 \\ 65.1 \\ 39.1 \\ 36.6 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\$
# Yrs.	63	63	63	63	63	63	63	63	63
Années									
Mean Moyenne	7.9	11.1	13.3	17.2	22.0	27.4	37.0	43.8	49.6
Std. Dev. Écart-type	2.5	3.2	4.0	5.8	7.8	9.5	12.9	15.4	15.2
Skew. Dissymétrie	0.73	0.32	0.70	0.90	0.88	1.14	2.21	2.89	2.42
Kurtosis	4.18	2.78	3.95	4.10	3.34	3.97	11.33	15.59	13.18

*-99.9 Indicates Missing Data/Données manquantes

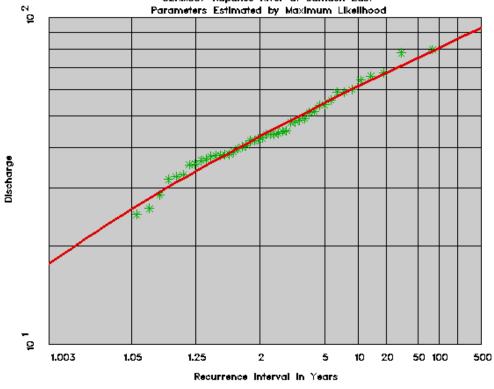
Warning: annual maximum amount greater than 100-yr return period amount Avertissement : la quantité maximale annuelle excède la quantité

pour i	ine periode de retour	de 100 ans	
Year/Année	Duration/Durée	Data/Données	100-yr/ans
1979	6 h	100.6	77.5
1979	12 h	126.0	92.0
1979	24 h	127.1	97.1
1985	15 min	26.7	25.9

## Table 2a : Return Period Rainfall Amounts (mm) Quantité de pluie (mm) par période de retour

*************	********	********	********	********	********	********	******
Duration/Durée	2	5	10	25	50	100	#Years
	yr/ans	yr/ans	yr/ans	yr/ans	yr/ans	yr/ans	Années
5 min	7.5	9.7	11.2	13.1	14.5	15.9	63
10 min	10.6	13.4	15.3	17.7	19.5	21.2	63
15 min	12.6	16.2	18.5	21.5	23.7	25.9	63
30 min	16.2	21.4	24.8	29.1	32.3	35.5	63
1 h	20.7	27.6	32.2	37.9	42.2	46.4	63

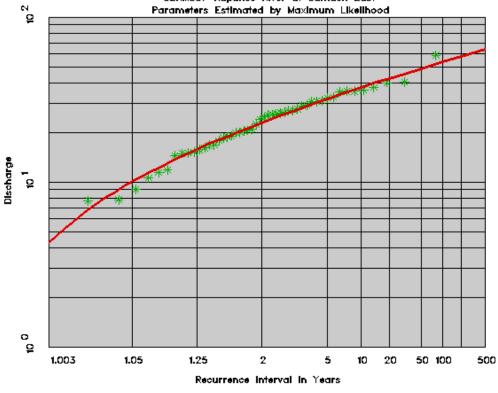
2 h 6 h 12 h 24 h	25.8 34.9 41.2 47.1	34.2 46.3 54.8 60.5	39.8 53.8 63.8 69.3	46.8 63.4 75.2 80.5	52.1 70.5 83.7 88.8	57.3 77.5 92.0 97.1	63 63 63 63
**********	*****	******	******	******	*******	******	*****
Table 2b :							
Return Period Intensité de						e confia	nce de 95%
**********	*****	******	******	*******	*******	*******	*****
Duration/Duré 5 mi 10 mi 15 mi 30 mi 1 h 2 h 6 h 12 h 24 h	yr/ans n 89.9 +/- 6.9 +/ n 63.5 +/- 4.4 +/ n 50.6 +/- 3.6 +/	$ \begin{array}{r} 116.8 \\ - 11.6 +/-80.6 \\ - 7.4 +/-64.8 \\ - 6.1 +/-42.8 \\ - 4.5 +/-27.6 \\ - 3.0 +/-17.1 \\ - 1.8 +/-7.7 \\ - 0.8 +/-4.6 \\ - 0.5 +/-2.5 \\ \end{array} $	134.7 15.7 +/ 91.9 10.0 +/ 74.2 8.3 +/ 49.6 6.0 +/ 32.2 4.0 +/ 19.9 2.5 +/ 9.0 1.1 +/ 5.3 0.7 +/ 2.9	157.2 - 21.2 +/ 106.3 - 13.5 +/ 86.1 - 11.2 +/ 58.2 - 8.1 +/ 37.9 - 5.4 +/ 23.4 - 3.3 +/ 10.6 - 1.5 +/ 6.3 - 0.9 +/ 3.4	173.9 - 25.4 +/- 116.9 - 16.1 +/- 94.9 - 13.4 +/- 64.6 - 9.7 +/- 42.2 - 6.5 +/- 26.0 - 4.0 +/- 11.7 - 1.8 +/- 7.0 - 1.1 +/- 3.7	127.4 - 18.7 103.6 - 15.6 70.9 - 11.3 46.4 - 7.5 28.6 - 4.6 12.9 - 2.1 7.7 - 1.2 4.0	#Years Années 63 63 63 63 63 63 63 63 63 63 63 63 63
**********	*****	******	*****	*******	********	******	*****
Table 3 : Inte	rpolation Equ	ation / Éq	uation d	'interpol	ation: R =	= A*T^B	
R = Interpolato RR = Rainfall T = Rainfall	rate (mm/h) /	Intensité	de la p	luie (mm/		a pluie	(mm/h)
**********	*****	******	******	******	******	******	****
Mean of Std. Dev. Std. E	ics/Statistiq RR/Moyenne de /Écart-type ( rror/Erreur-t Coefficient ent/Exposant % erreur moye	yr/ans RR 31.3 RR) 30.8 ype 5.3 (A) 19.1 (B) -0.681	yr/ans 40.5 39.6 6.8 24.9 -0.677	46.6 45.5 7.8 28.8	25 5 /ans yr/ar 54.4 60 52.9 58 9.1 10 33.6 37 .674 -0.67 8.1 8	1 65.3 3 63.3 1 11.3 3 40.9 73 -0.67	s 8 1 9 2


Appendix G: CFA Output – Three Parameter Log Normal



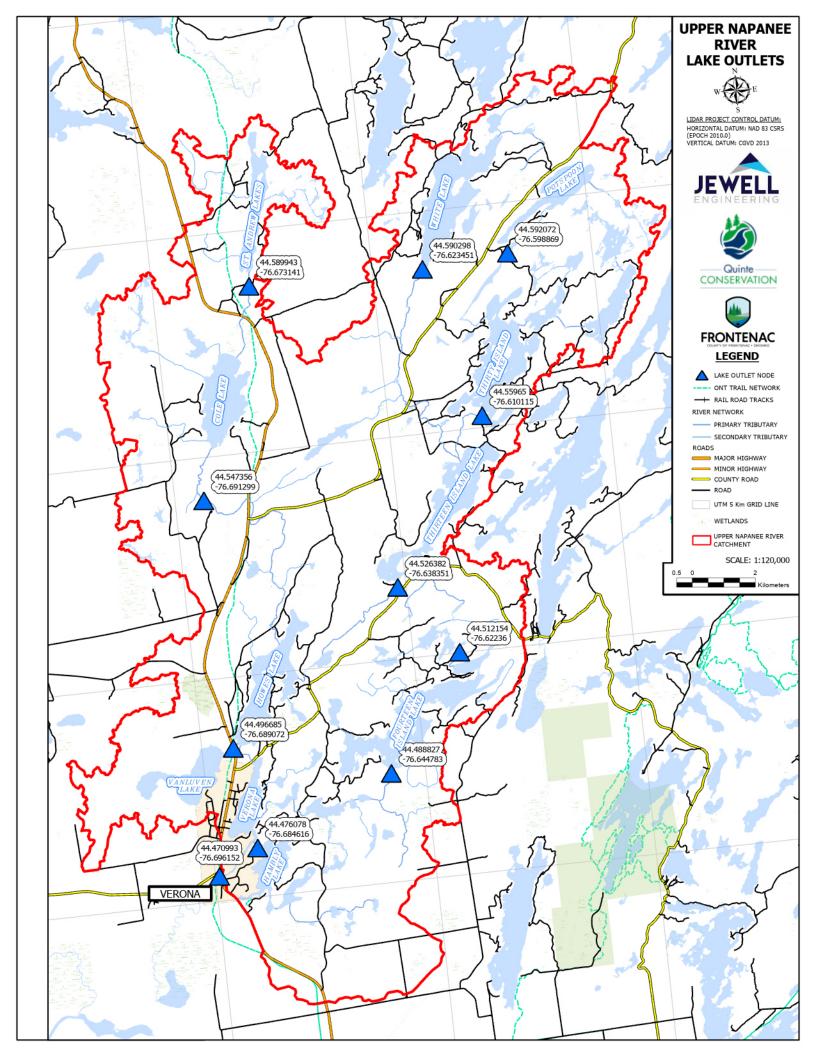
## All Maximum Instantaneous Peaks (1974 – 2022):

3LN PARAMETERS:	A= −13.676	M= 4.041 S= .218
	FLOOD FREQUENCY	REGIME
RETURN	EXCEEDANCE	FLOOD
PERIOD	PROBABILITY	
1.003	.997	17.6
1.050	.952	25.9
1.250	.800	33.7
2.000	.500	43.2
5.000	.200	54.7
10.000	.100	61.5
20.000	.050	67.7
50.000	.020	75.3
100.000	.010	80.7
200.000	.005	86.0
500.000	.002	92.8


Historical Flood Frequency – Three Parameter Lognormal Distribution 02HM007 Napanee River at Camden East



# Rainfall Only Maximum Instantaneous Peaks (May 1st to December 31st, 1974 – 2022):

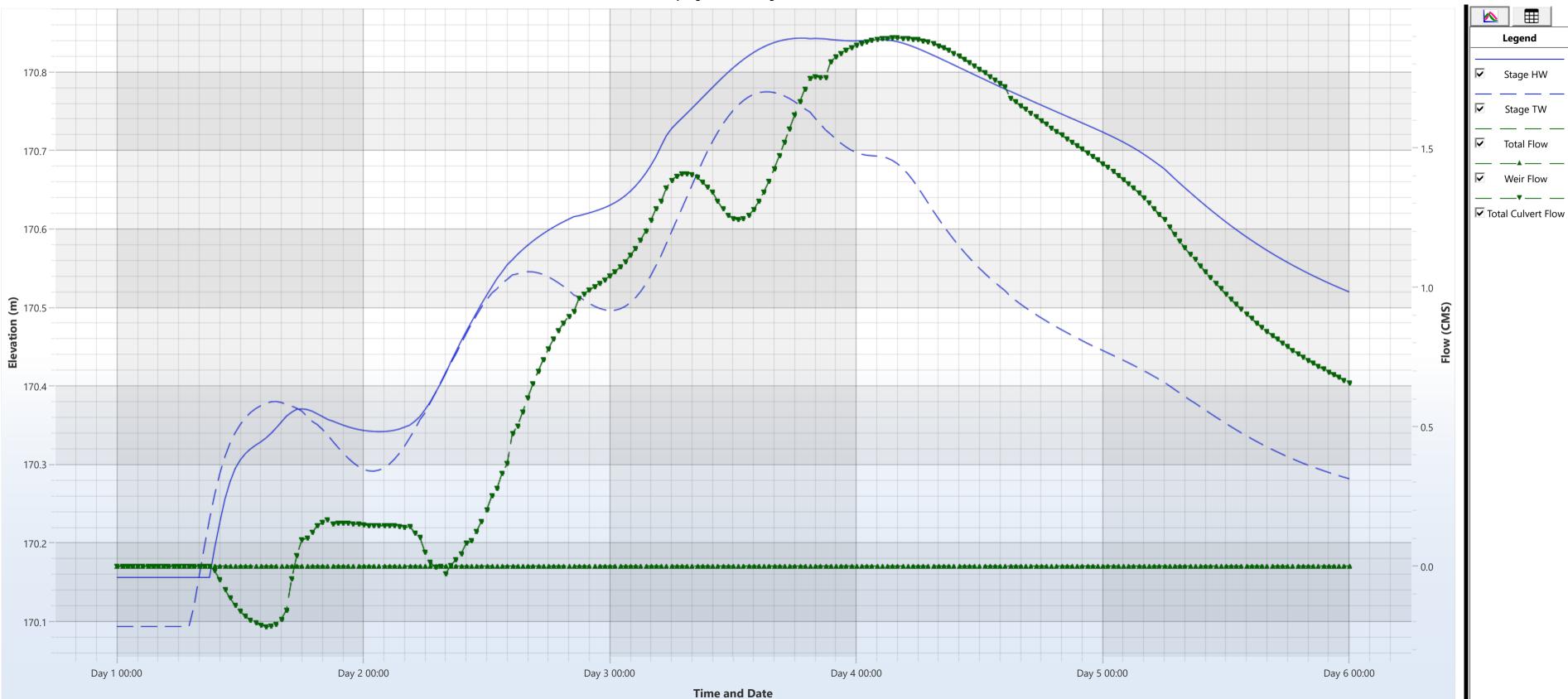

JLN PARAMETERS:	A= -13.713	M= 3.603 S= .260
	FLOOD FREQUENCY R	EGIME
RETURN	EXCEEDANCE	FLOOD
PERIOD	PROBABILITY	
1.003	.997	4.27
1.050	.952	10.1
1.250	.800	15.8
2.000	.500	23.0
5.000	.200	32.0
10.000	.100	37.5
20.000	.050	42.6
50.000	.020	48.9
100.000	.010	53.5
200.000	.005	58.0
500.000	.002	63.8

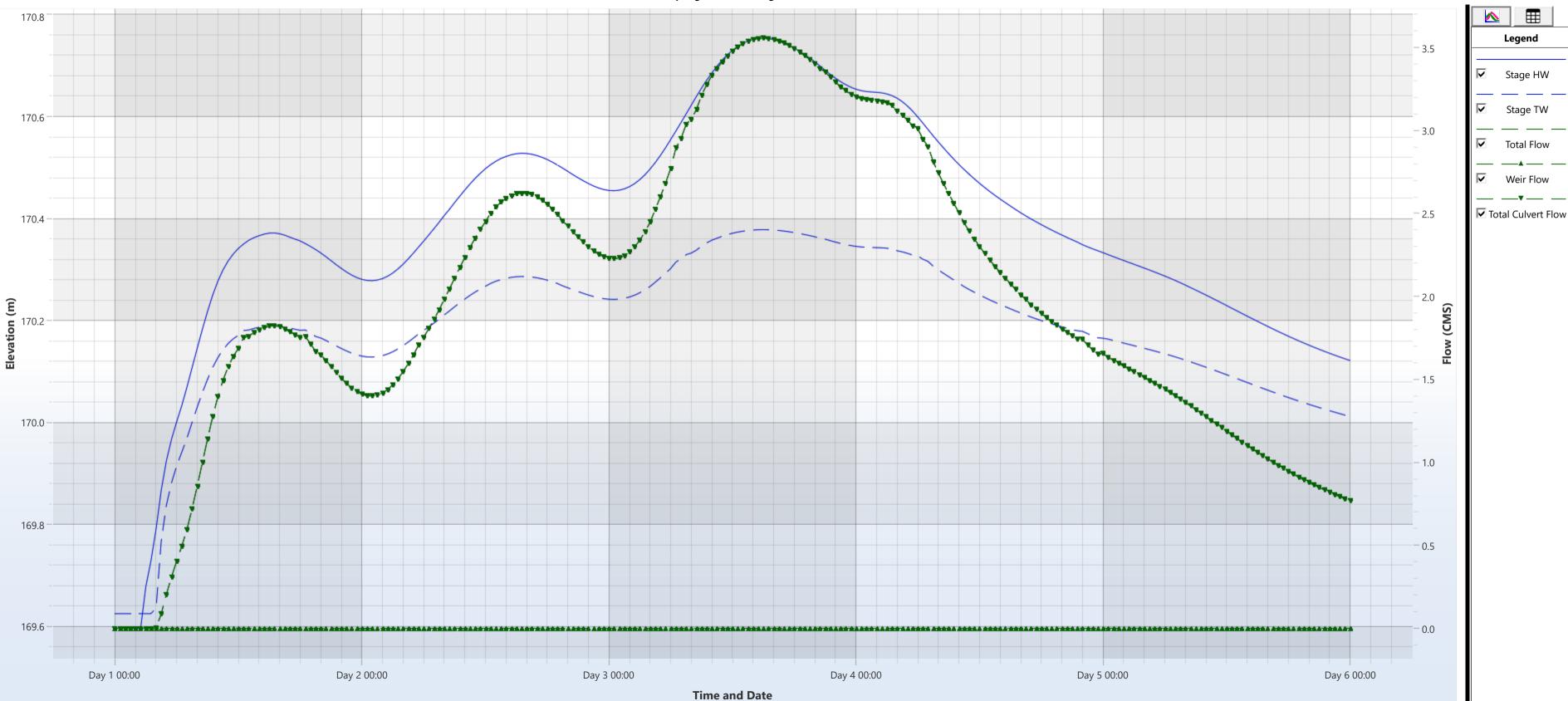


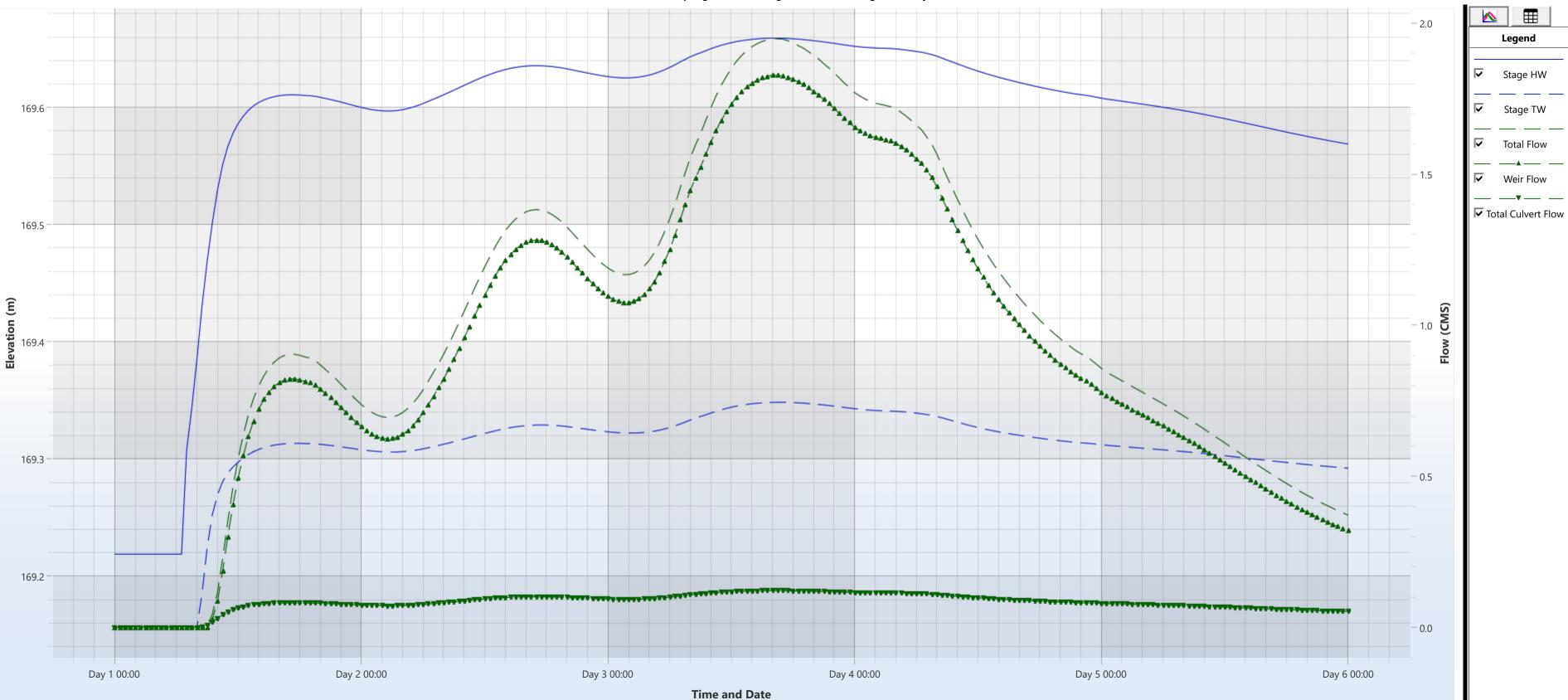


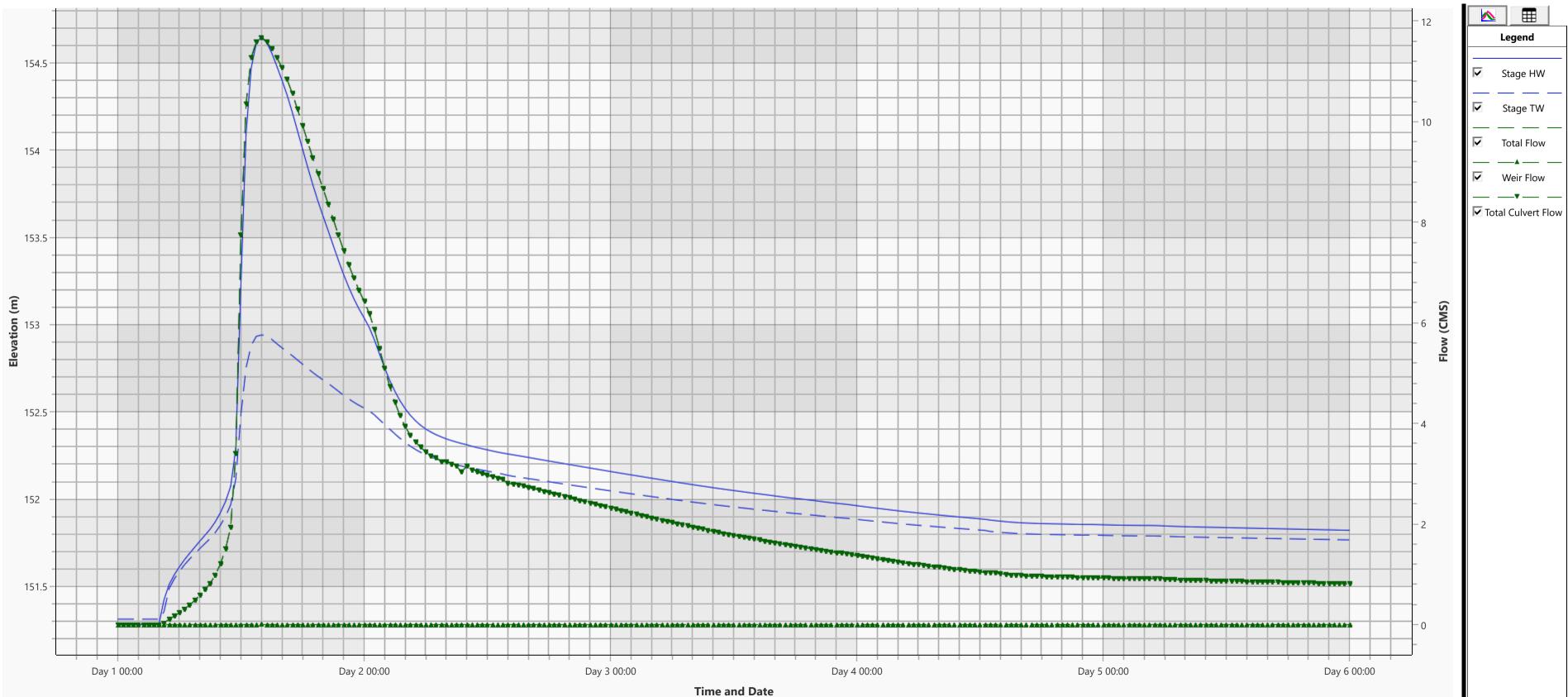
Appendix H: Lake Outlet Locations



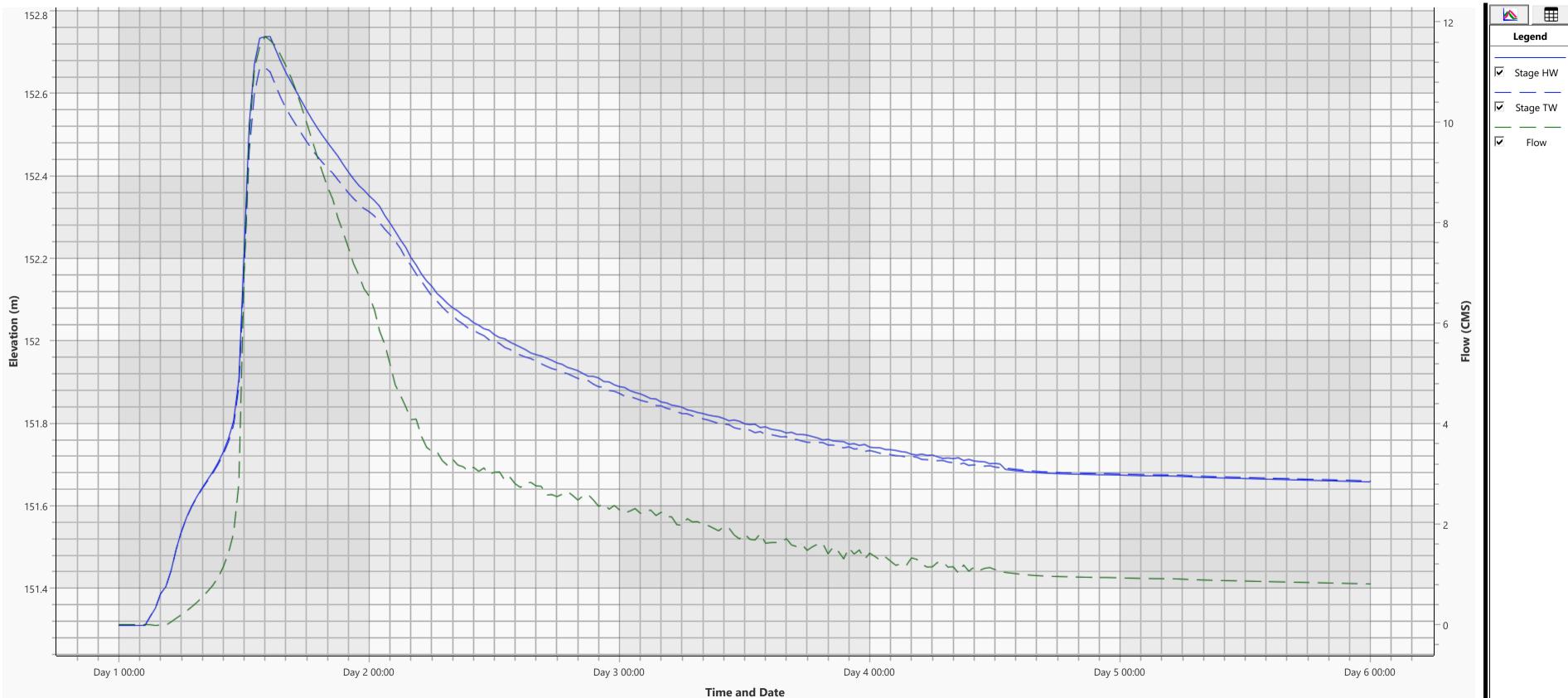


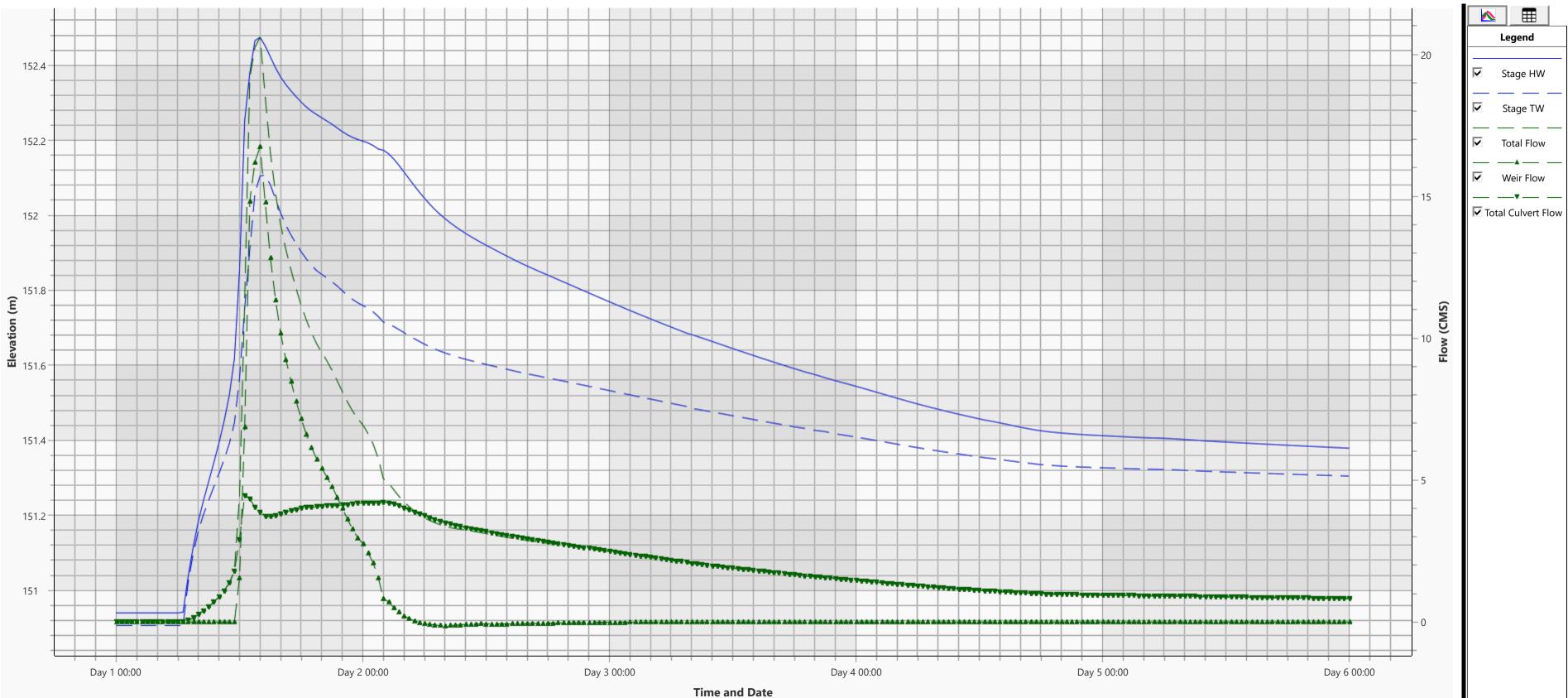


Appendix I: Culvert & Bridge Stage-Flow Hydrographs



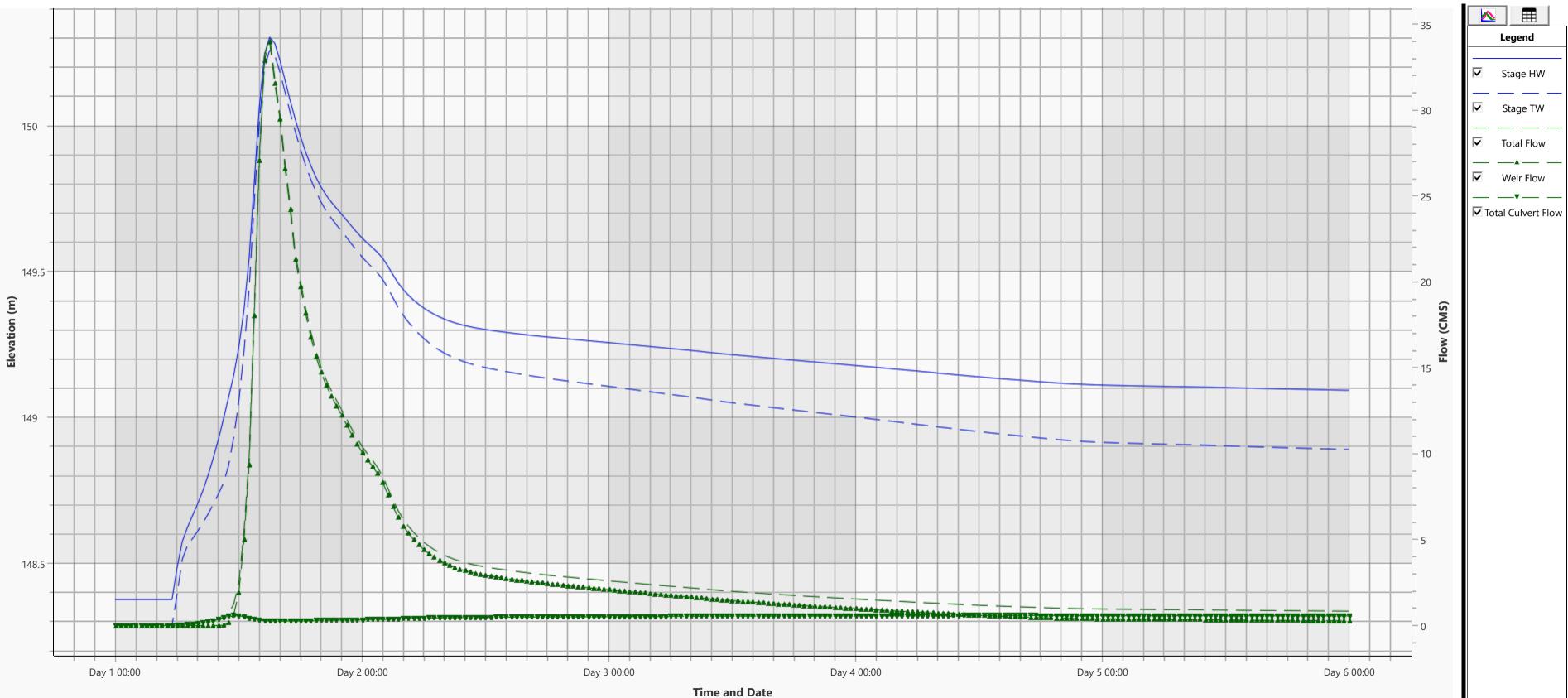




1% AEP Spring Melt - Crossing 2 - K&P Trail

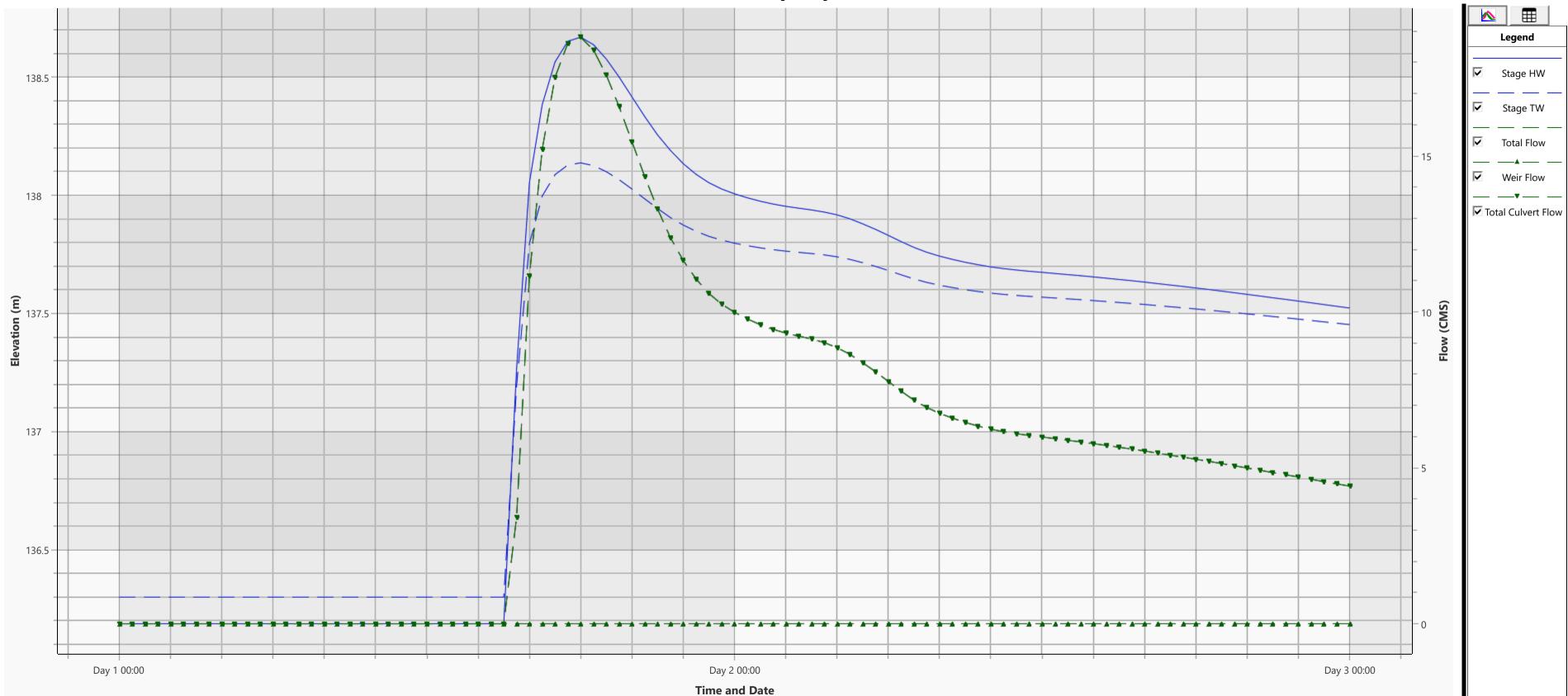


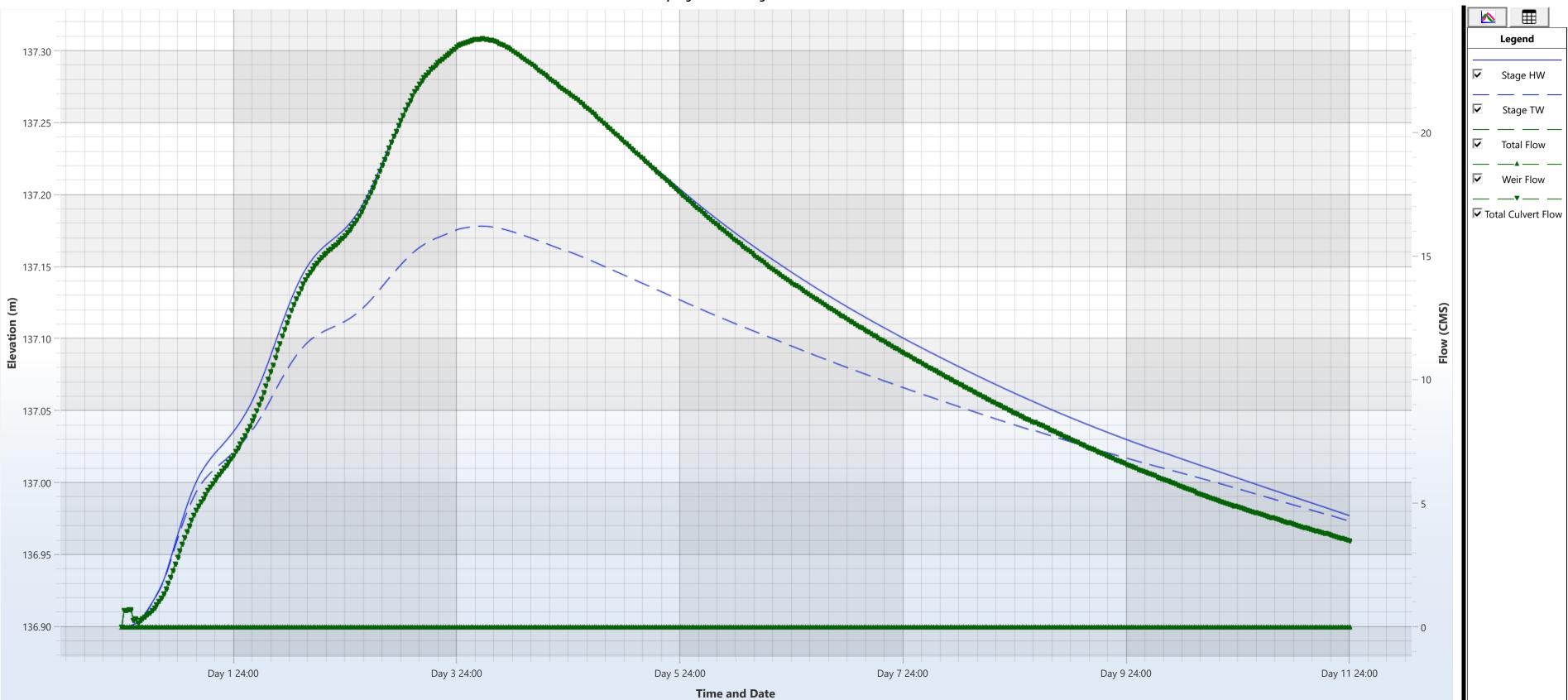





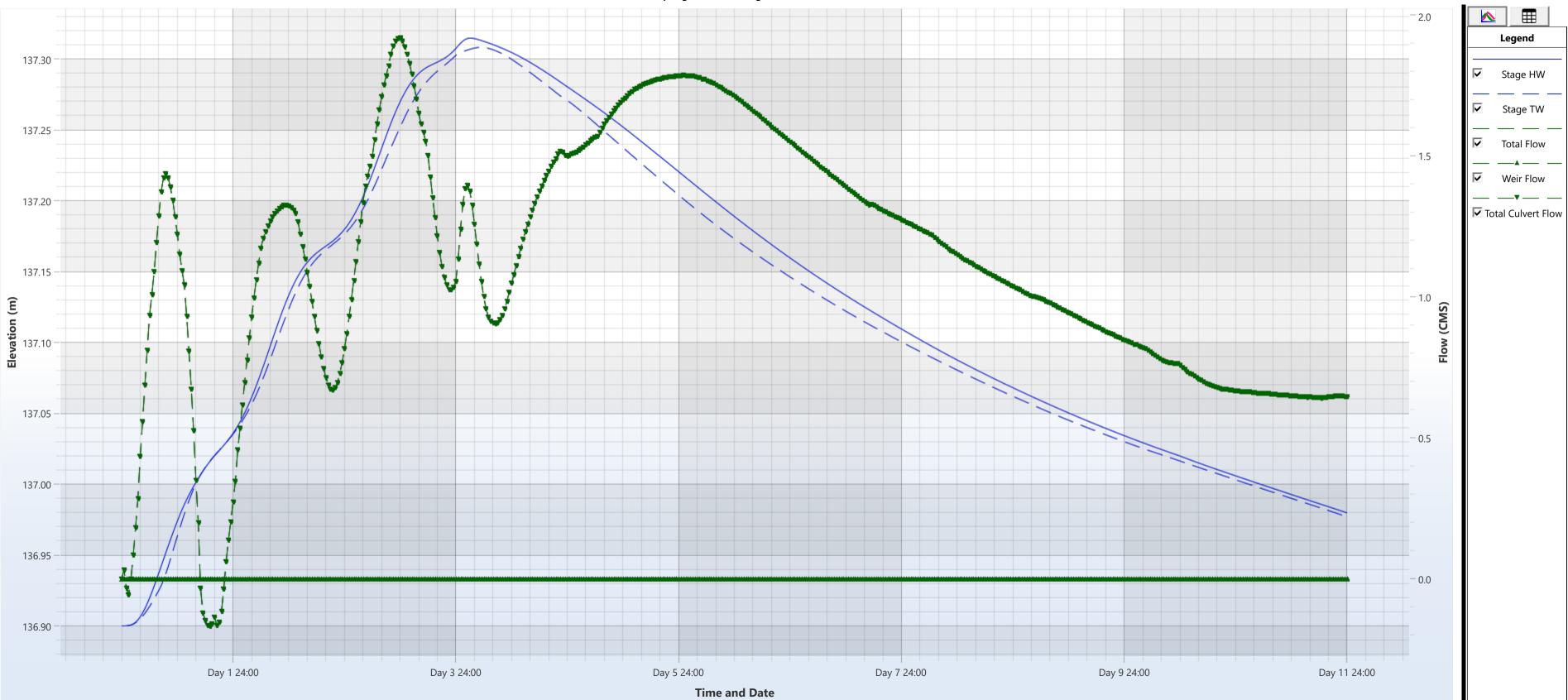



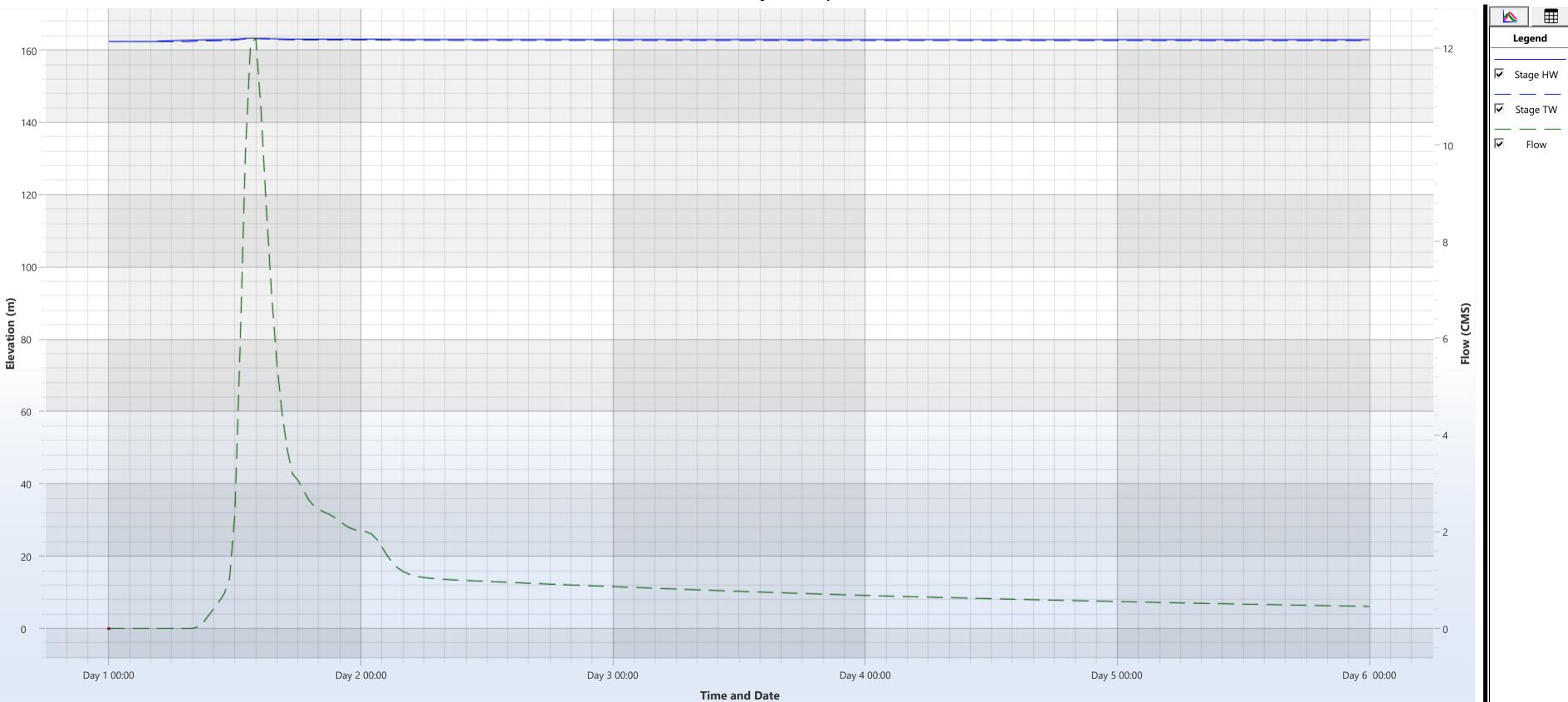

1% AEP Rainfall - Crossing 5 - HWY 38 Near Godfrey

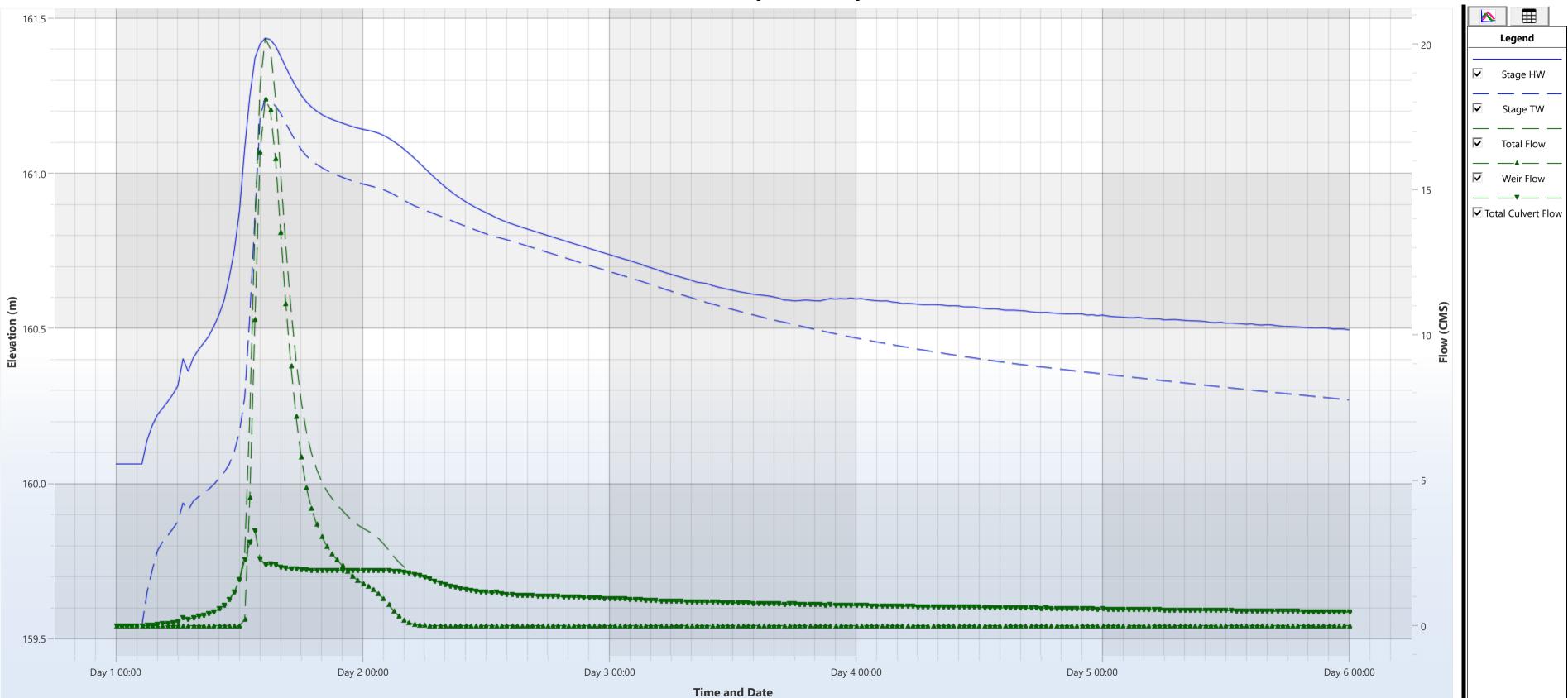


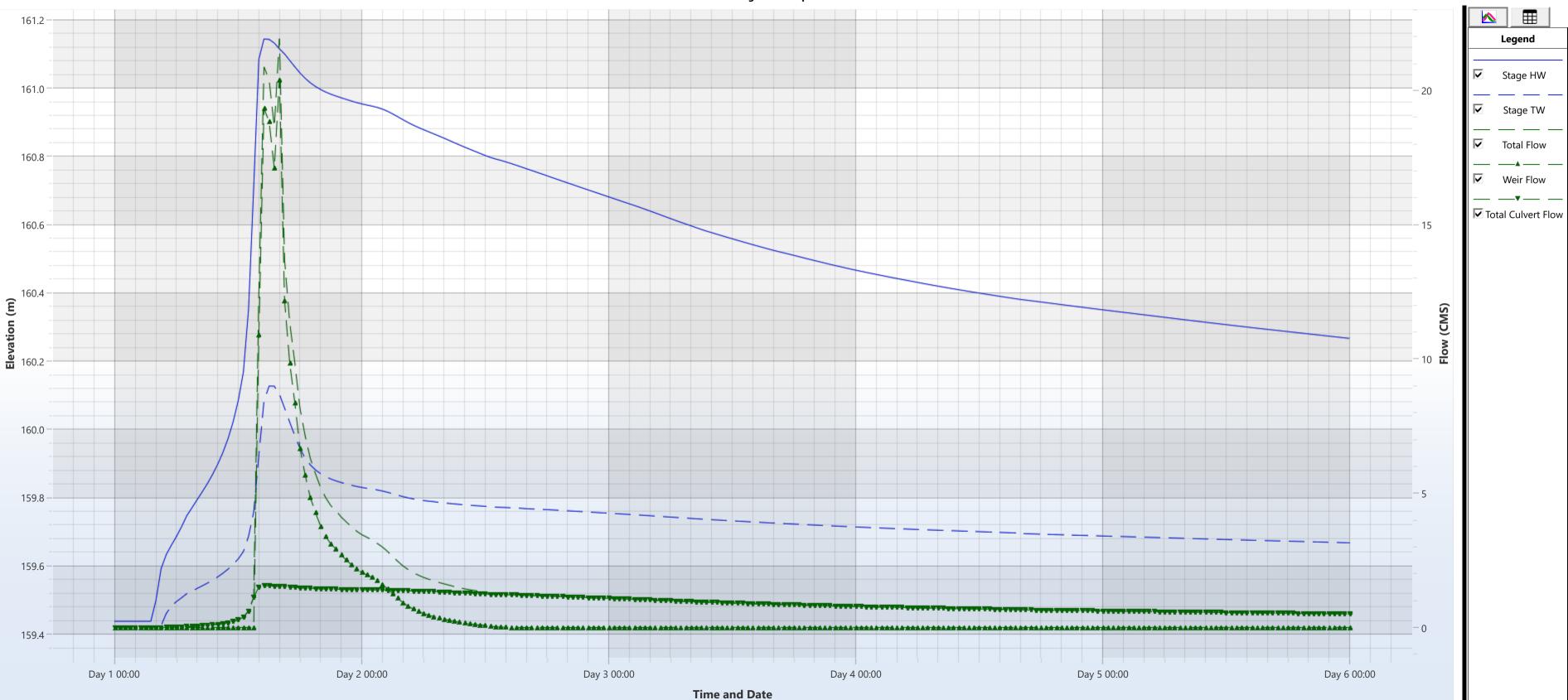



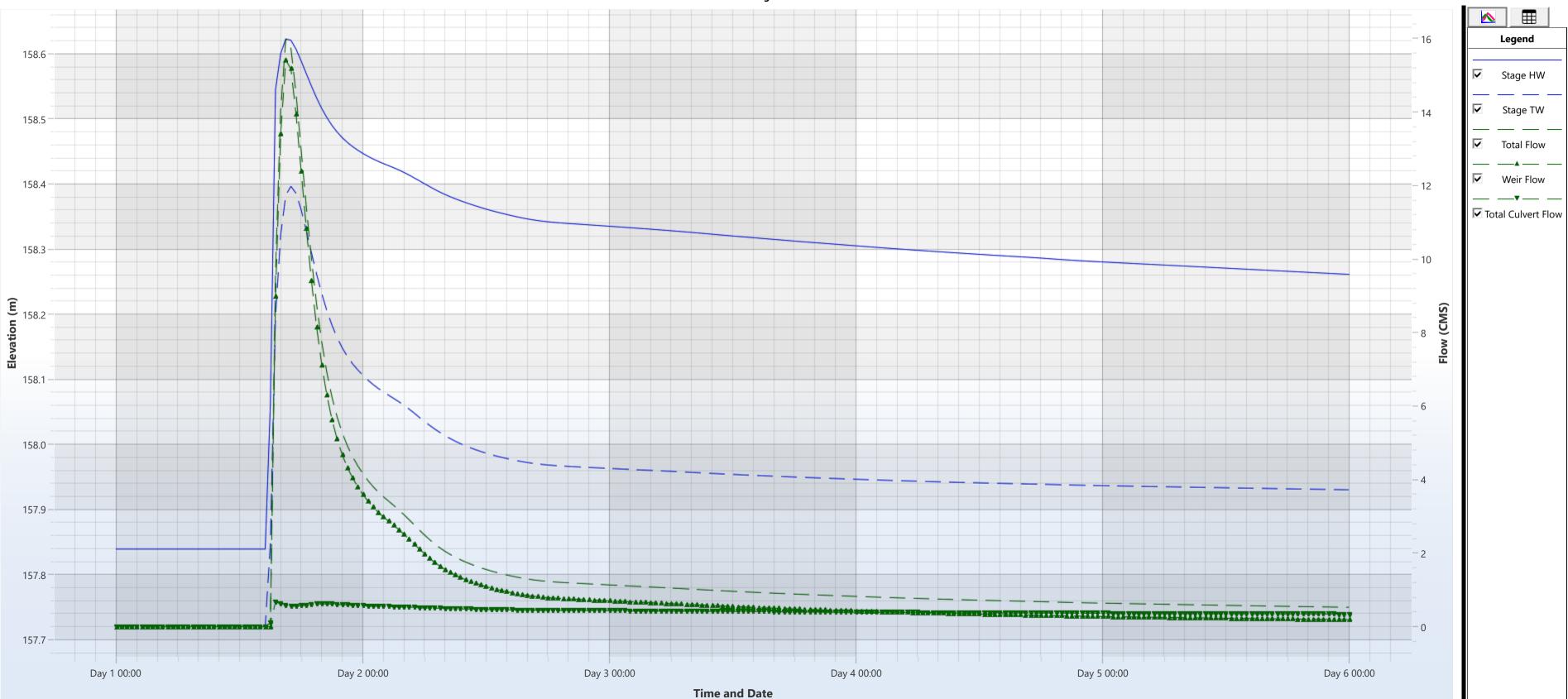

## 1% AEP Rainfall - Crossing 7 - Westport Rd Near Godfrey

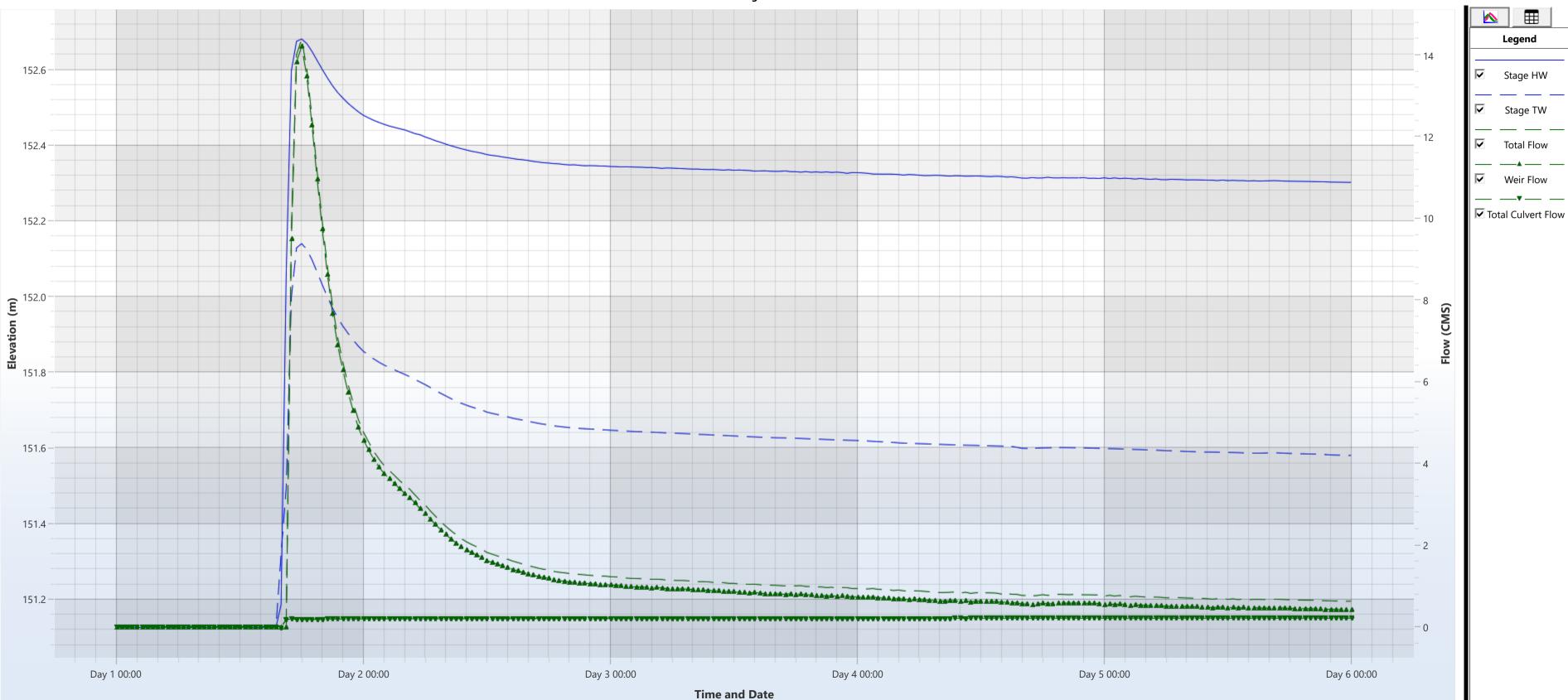


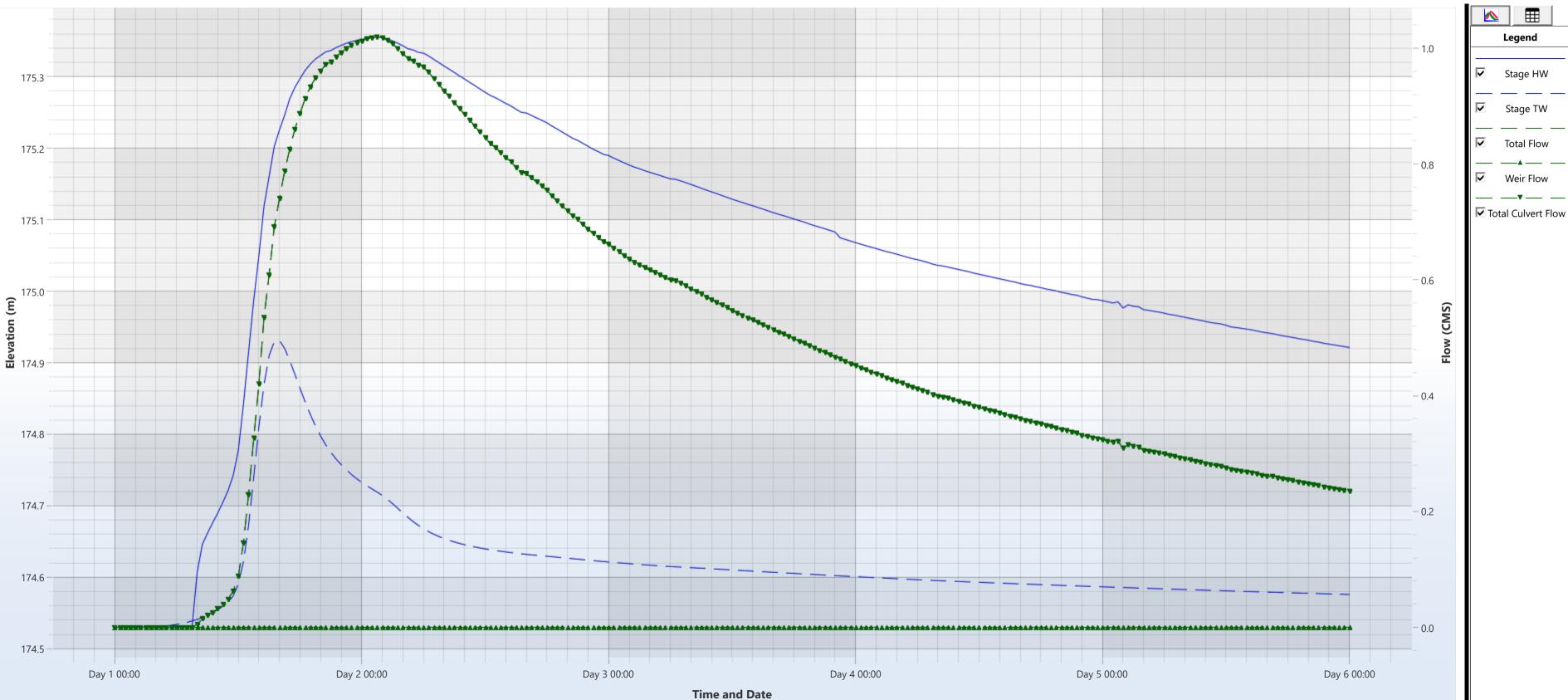


1% AEP Rainfall - Crossing 9 - Craig Rd



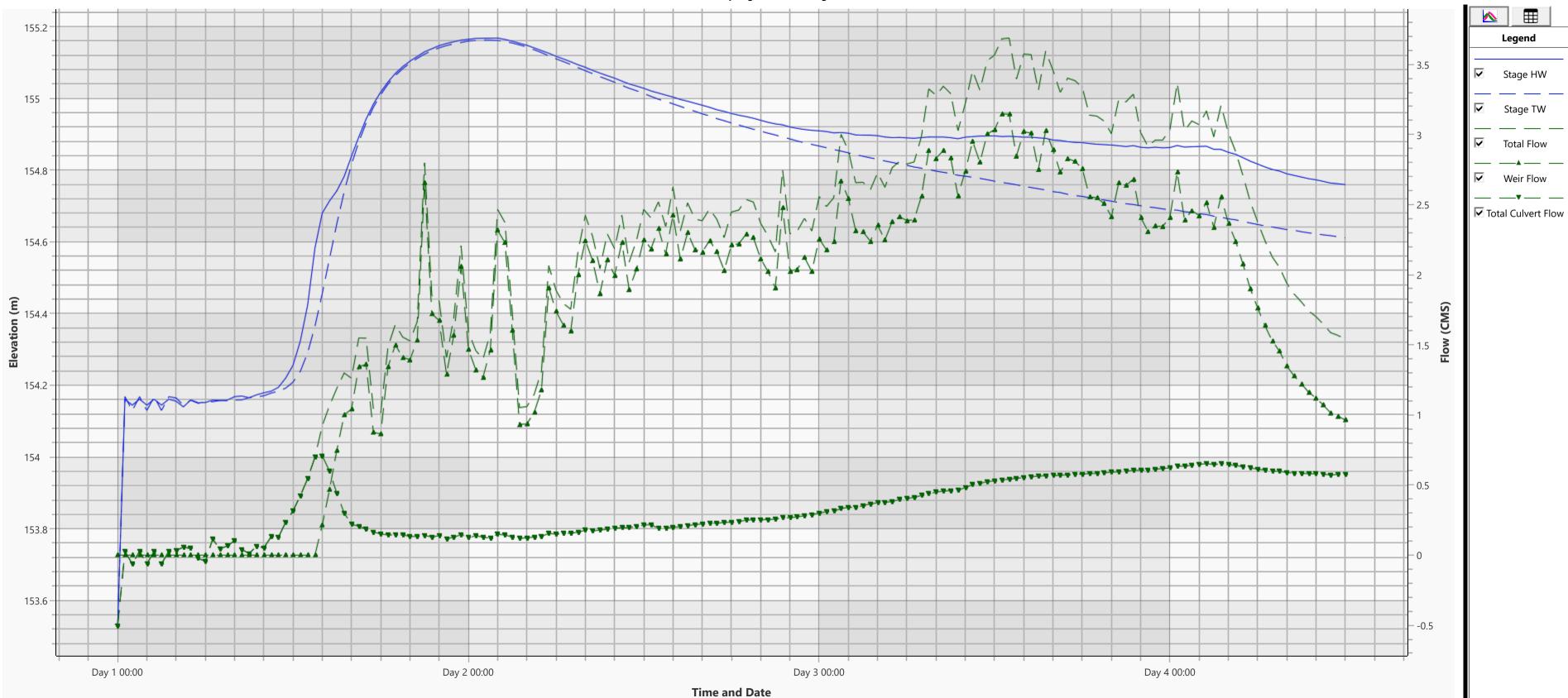



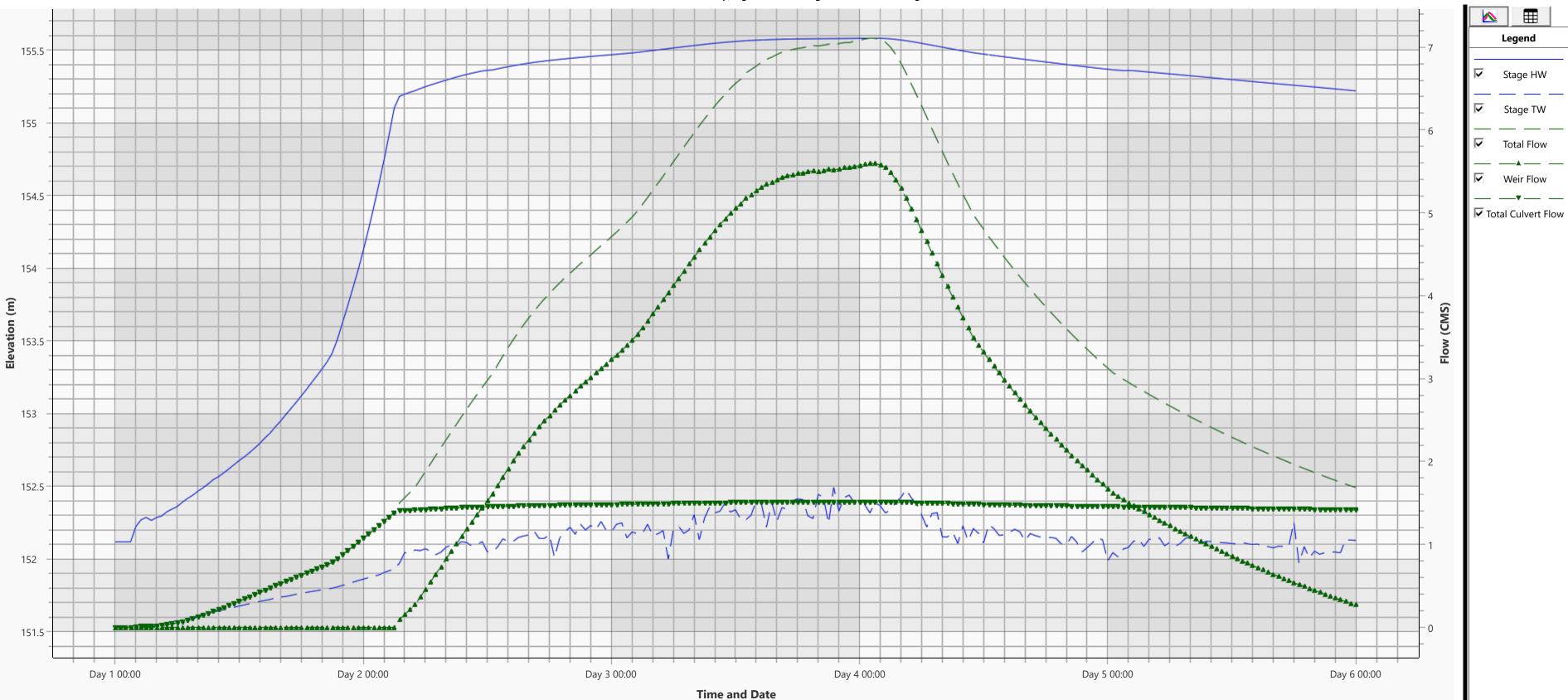



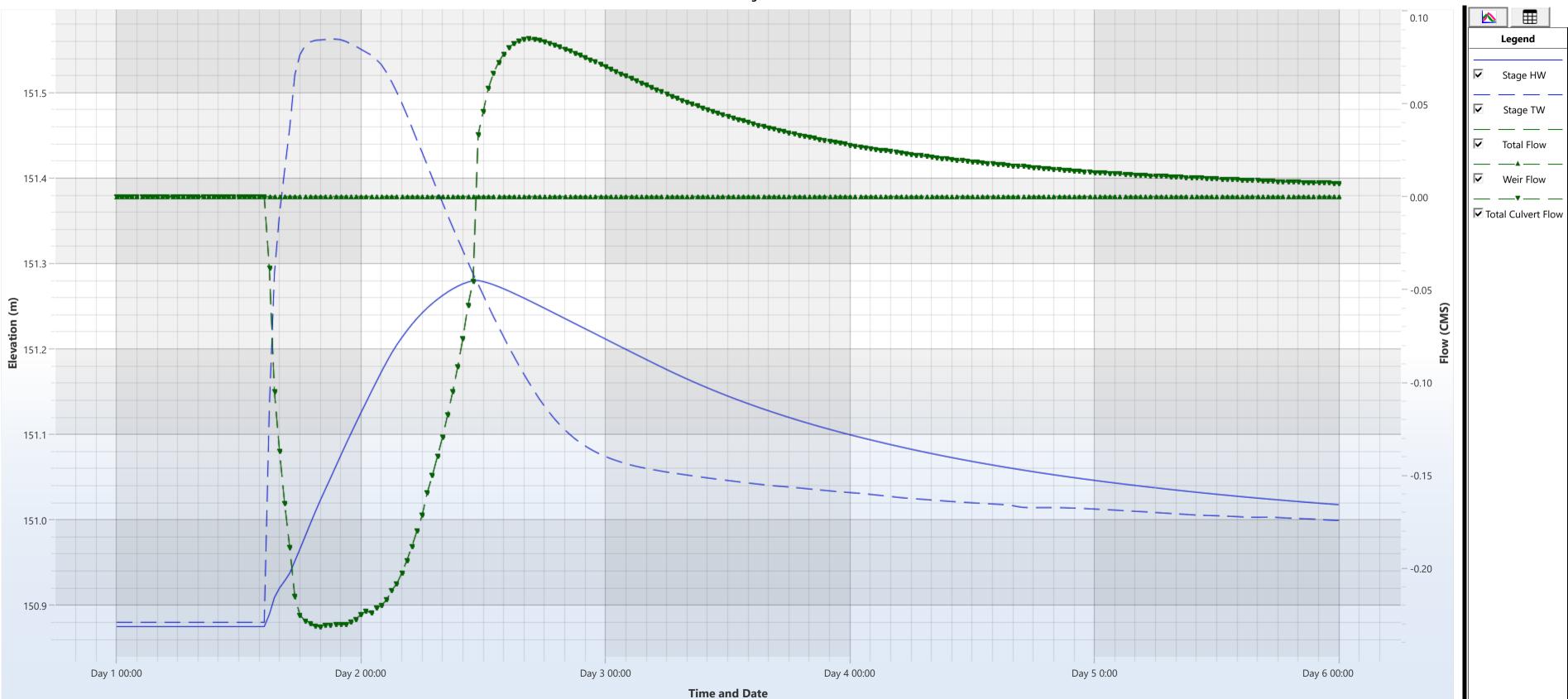



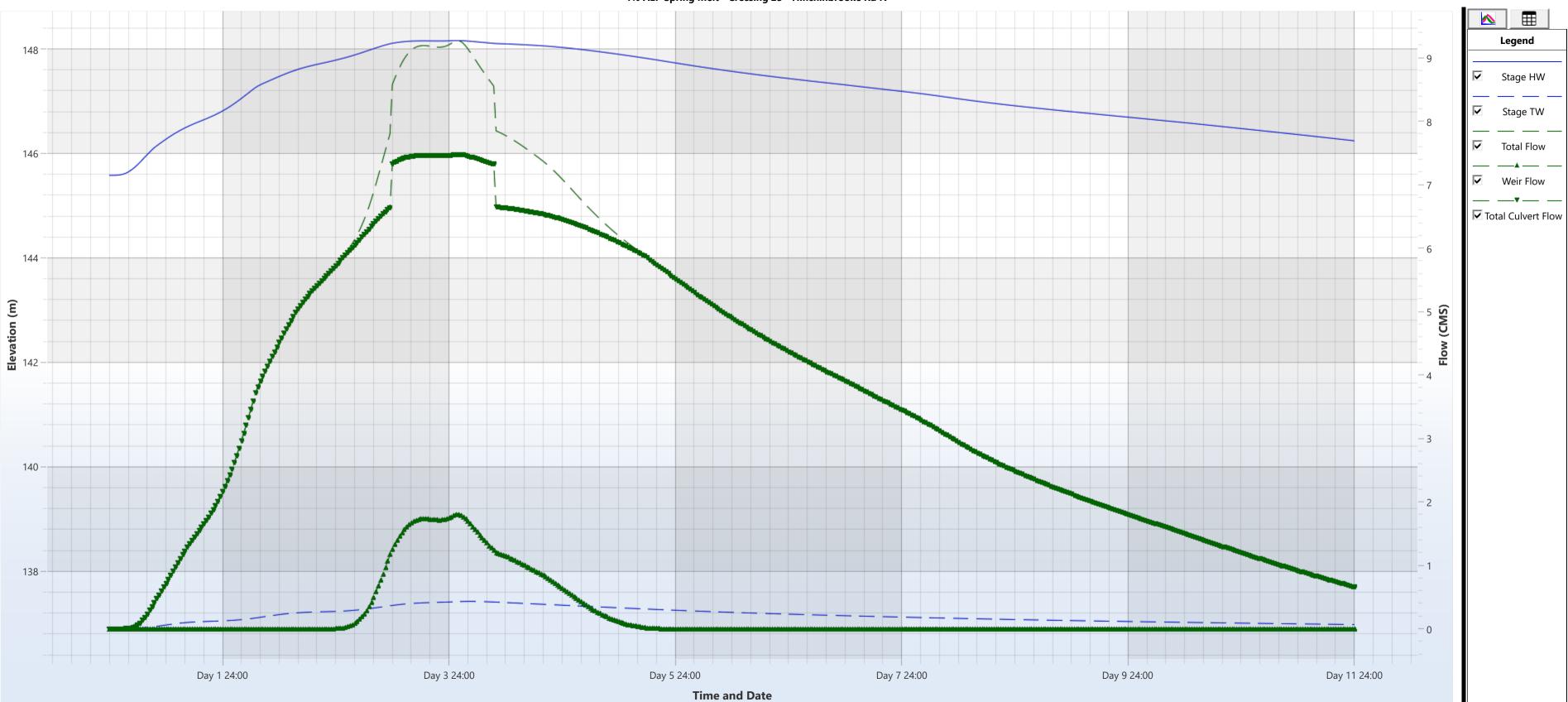


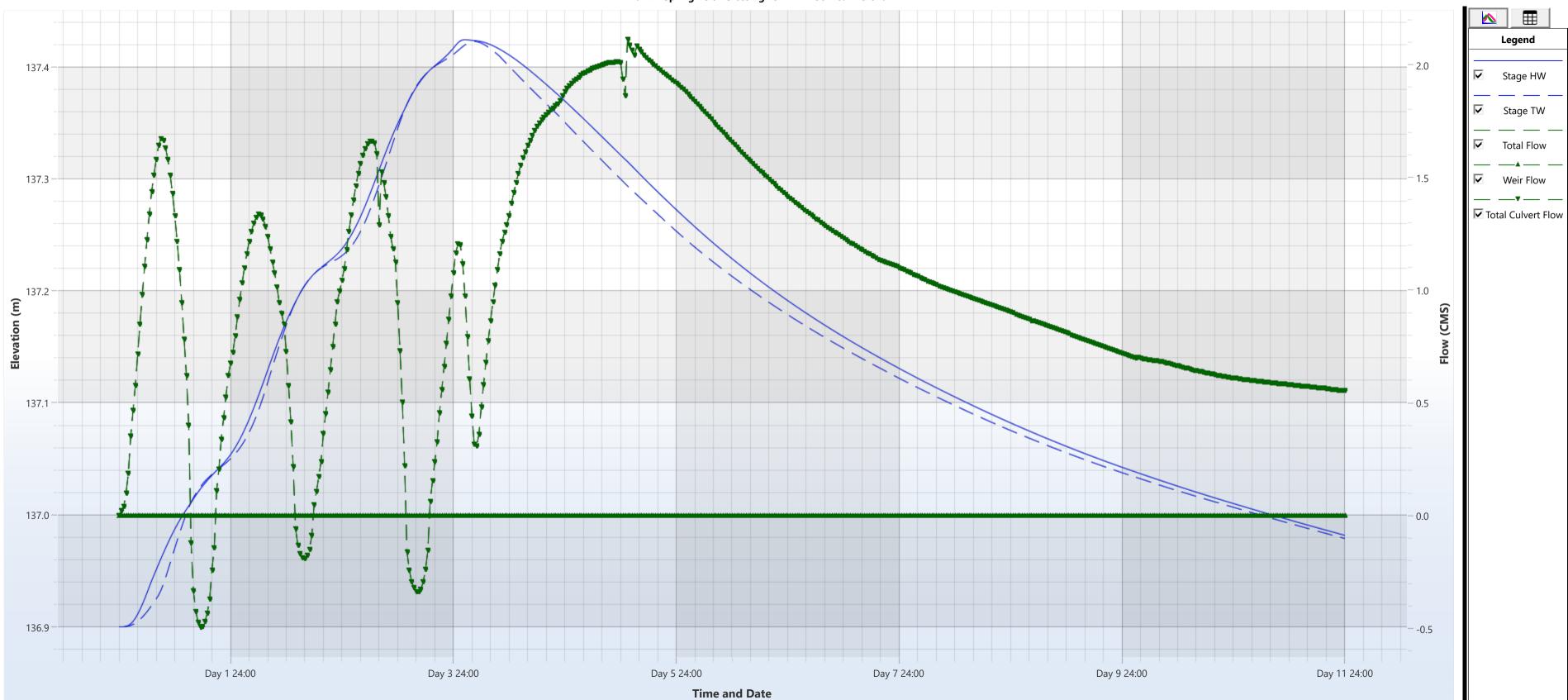







1% AEP Spring Melt - Crossing 19 - McColl Ln






1% AEP Rainfall - Crossing 21 - Bunker Hill Rd B









Appendix J: Culvert & Bridge Data Sheets



Structure ID	1		
Location	St. Andrews La	ike Lane	_
UTM Coordinates	366964, 493	8763	
Туре	Three HDPE C	ulverts	
Conversion to CGVD28	+0.33		-
A. Specifications			
Top of Road Elevation at Structu	re	171.25	m
Invert		170.20	m
Number of Openings		3	
Low Point of Road		170.59	m
Governing 1% AEP Event		Spring melt	
Governing 1% AEP Q _{peak}		1.90	m³/s
HW _{peak}		170.85	m
TW _{peak}		170.85	m
Δ H _{peak}		0.00	m
Max. Relief Flow Depth		0.26	_ 
C. Benchmark			
Description Swamp Bo			
	, 4938763.24		
Elevation 170.42			



Structure ID	2		
Location	K&P Trail near	Cole Lake	—
UTM Coordinates	366876, 493	38489	
Туре	Concrete Box	Culvert	
Conversion to CGVD			
A. Specifications			
Top of Road Elevatio	n at Structure	171.25	m
Invert		168.85	m
Number of Openings		1	
Low Point of Road		171.13	m
Governing 1% AEP Ev	/ent	Spring melt	it
Governing 1% AEP Q	peak	1.90	m³/s
$HW_{peak}$		170.84	m
TW _{peak}		170.77	m
$\Delta H_{peak}$		0.07	m
Max. Relief Flow Dep	oth	0.00	m
B. Photographic Pres	entation		
C. Benchmark			
Description	Obvert of Culvert		
Description Coordinates	366695.91, 4933879.69		
Elevation	168.3		
Lievation			



Structure ID	3		
Location	Highway 38 near	Cole Lake	-
UTM Coordinates	367020, 493	8050	
Туре	Concrete Box	Culvert	
Conversion to CGVD28	+0.33		-
A. Specifications			
Top of Road Elevation at Structu	ıre	171.26	m
Invert		168.28	m
Number of Openings		1	
Low Point of Road		170.99	m
Governing 1% AEP Event		Spring melt	-
Governing 1% AEP Q _{peak}		3.60	m³/s
HW _{peak}		170.75	m
TW _{peak}		170.38	m
$\Delta$ H _{peak}		0.37	m
Max. Relief Flow Depth		0.00	m
B. Photographic Presentation			

Description	Obvert of Box Culvert
Coordinates	367022.21. 4938063.20
Elevation	171.02



Structure ID	5	
Location	Highway 38 near Godfrey	
UTM Coordinates	366665, 4933987	
Туре	Concrete Box Culvert	
Conversion to CGVD28	+0.33	
A. Specifications		
Top of Road Elevation at Str		
Invert	150.3	10 m
Number of Openings	1	
Low Point of Road	153.5	2 m
Governing 1% AEP Event	Rainfa	all
Governing 1% AEP Q _{peak}	11.7	0m³/s
HW _{peak}	154.6	5 m
TW _{peak}	152.9	94 m
$\Delta H_{peak}$	1.71	m
Max. Relief Flow Depth B. Photographic Presentatio	1.13	^B m
		<image/>
C. Benchmark		
Description South	East Soffit	
· · · · · · · · · · · · · · · · · · ·	6.36, 4933989.72	
Elevation 152.36		



Structure ID	6
Location	K&P Trail N
UTM Coordinates	366701, 4933876
Туре	Bridge
Conversion to CGVD28	+0.33

### A. Specifications

Top of Road Elevation at Structure	154.39	m
Invert	150.06	m
Number of Openings	1	
Low Point of Road	154.28	m
Governing 1% AEP Event	Rainfall	
Governing 1% AEP Q _{peak}	11.70	m³/s
HW _{peak}	152.74	m
TW _{peak}	152.66	m
Δ H _{peak}	0.08	m
Max. Relief Flow Depth	0.00	m

B. Photographic Presentation



Description	top of conc culvert opening
Coordinates	366878.24, 4938488.39
Elevation	151.73



Structure ID	7
Location	Westport Road near Godfrey
UTM Coordinates	366673, 4933510
Туре	CSP Arch Culvert
Conversion to CGVD28	+0.33

A. Specifications

Top of Road Elevation at Structure	152.40	m
Invert	149.60	m
Number of Openings	1	
Low Point of Road	151.66	m
Governing 1% AEP Event	Rainfall	
Governing 1% AEP Q _{peak}	20.60	m³/s
HW _{peak}	152.47	m
TW _{peak}	152.11	m
Δ H _{peak}	0.36	m
Max. Relief Flow Depth	0.81	m

### B. Photographic Presentation



Description	Obvert of Culvert, north side
Coordinates	366669.13, 4933513.28
Elevation	152.15



Structure ID	9	
Location	Craig Road	—
UTM Coordinates	366850, 4930999	_
Туре	CSP Arch Culvert	
Conversion to CGVD28	+0.33	_
A. Specifications		
Top of Road Elevation at Structu		_m
Invert	135.64	_ m
Number of Openings	1	_
Low Point of Road	139.31	m
Governing 1% AEP Event	Rainfall	_
Governing 1% AEP Q _{peak}	18.80	m³/s
HW _{peak}	138.67	m
TW _{peak}	138.14	m
$\Delta H_{peak}$	0.53	m
Max. Relief Flow Depth	0.00	m
C. Benchmark		
Description Obvert of	4400 CSP	
	. 4930996.56	
Elevation 138.51		



Structure ID	10		
Location	Highway 38 near	Howes Lake	
UTM Coordinates	365712, 492	28432	
Туре	Concrete Box	Culvert	
Conversion to CGVD2	8 +0.33		_
A. Specifications			
Top of Road Elevation	at Structure	138.65	_m
Invert		138.11	_m
Number of Openings		1	_
Low Point of Road		138.22	_m
Governing 1% AEP Eve		Spring melt	
Governing 1% AEP Q _p	eak	23.80	m³/s
$HW_{peak}$		137.31	m
TW _{peak}		137.18	m
$\Delta H_{peak}$		0.13	m
Max. Relief Flow Dept	th	0.00	m
		the second	
C. Benchmark			
Description	Top of conc. box culvert		
	365721.54, 4928405		
-	137.72		



Structure ID	11	1		
Location	Desert La	ke Road	_	
UTM Coordinates	366103, 4	1928059	_	
Туре	Bric	lge		
Conversion to CGVE	+0.	33		
A. Specifications				
Top of Road Elevation	on at Structure	139.25	m	
Invert		135.50	m	
Number of Opening	s	1		
Low Point of Road		139.16	m	
Governing 1% AEP E	Event	Spring mel	:	
Governing 1% AEP (		20.70	_ m³/s	
HW _{peak}		137.42	m m	
TW _{peak}		137.31	m	
$\Delta H_{peak}$		0.11	m	
Max. Relief Flow De	pth	0.00	m	
C. Benchmark				
Description	CL of Road			
Coordinates	366105.11, 4928059.47			



139.5

Elevation

Structure ID	1	12	
Location	Cedarwo	ods Drive	-
UTM Coordinates	366021,	4926137	_
Туре	Concrete	Box Culvert	_
Conversion to CGVD28	+0	0.33	_
A. Specifications			
Top of Road Elevation at Stru	icture	137.59	m
Invert		135.63	m
Number of Openings		1	_
Low Point of Road		137.20	m
Governing 1% AEP Event		Spring melt	_
Governing 1% AEP Q _{peak}		1.90	m³/s
HW _{peak}		137.31	m
TW _{peak}		137.31	m
$\Delta H_{peak}$		0.00	m
Max. Relief Flow Depth		0.00	m

B. Photographic Presentation



Description	CL of Steel Deck
Coordinates	366020.04, 4926135.68
Elevation	135.4



Structure ID	13
Location	Buck Bay Road
UTM Coordinates	370464, 4936882
Туре	Bridge
Conversion to CGVD28	+0.33

### A. Specifications

Top of Road Elevation at Structure	162.89	m
Invert	162.50	m
Number of Openings	1	
Low Point of Road	162.74	m
Governing 1% AEP Event	Rainfall	
Governing 1% AEP Q _{peak}	12.20	m³/s
HW _{peak}	163.26	m
TW _{peak}	163.17	m
Δ H _{peak}	0.09	m
Max. Relief Flow Depth	0.52	m

B. Photographic Presentation



C. Benchmark	
Description	BM cut cross top dam between north and middle logbay
Coordinates	369766.085, 4931605.917
Elevation	151.35



Structure ID	15		
Location	Westport Road near Glendower		-
UTM Coordinates	370467, 493	5677	-
Туре	CSP Culve	rt	-
Conversion to CGVD28	+0.33		-
A. Specifications			
Top of Road Elevation at Str	ucture	160.85	m
Invert	-	158.64	m
Number of Openings	-	1	-
Low Point of Road	-	160.68	m
Governing 1% AEP Event	-	Rainfall	-
Governing 1% AEP Q _{peak}	-	21.90	 m³/s
HW _{peak}	-	161.14	m
TW _{peak}	-	160.13	m
$\Delta$ H _{peak}	-	1.01	m
Max. Relief Flow Depth	-	0.46	m
B. Photographic Presentatio			

#### C. Benchmark

 Description
 Obvert of 1800 CSP

 Coordinates
 370466.81, 4935672.82

 Elevation
 160.29



Structure ID	16		
Location			_
UTM Coordinates	370892, 493	5286	_
Туре	CSP Arch Cu	ulvert	_
Conversion to CGVD2	8 +0.33		_
A. Specifications			
Top of Road Elevation	at Structure	158.54	m
Invert		157.11	m
Number of Openings		1	
Low Point of Road		158.13	m
Governing 1% AEP Eve	ent	Rainfall	
Governing 1% AEP Q _p	eak	16.00	m³/s
HW _{peak}		158.62	m
TW _{peak}		158.40	m
$\Delta H_{peak}$		0.22	m
Max. Relief Flow Dept	h	0.49	m
C. Benchmark			
Description	Soffit		
	370894.06, 4935290.12		
-	158.57		



Structure ID	17		
Location –	Bunker Hill Road		-
UTM Coordinates	371226, 493	34750	-
Туре	CSP Culv	ert	-
Conversion to CGVD28	+0.33		-
A. Specifications			
Top of Road Elevation at Stru	cture	152.90	m
Invert		150.34	
Number of Openings		1	-
Low Point of Road		152.22	
Governing 1% AEP Event		Rainfall	-
Governing 1% AEP Q _{peak}		14.40	m³/s
HW _{peak}		152.68	 
TW _{peak}		152.14	- m
$\Delta H_{peak}$		0.54	 m
Max. Relief Flow Depth		0.46	 
B. Photographic Presentation			
C. Benchmark			
Description 1800 CS	P Obvert		
•	.56, 4934754.90		
Elevation 152.48			



Structure ID	18	
Location	Sperling Road	
UTM Coordinates	372984, 4938747	
Туре	CSP Culvert	-
Conversion to CGVD28	+0.33	-
A. Specifications		
Top of Road Elevation at S	tructure 176.24	m
Invert	174.53	m
Number of Openings	1	
Low Point of Road	175.41	m
Governing 1% AEP Event	Spring melt	
Governing 1% AEP Q _{peak}	1.00	m³/s
HW _{peak}	175.35	m
TW _{peak}	174.93	m
$\Delta$ H _{peak}	0.42	m
Max. Relief Flow Depth	0.00	- m
B. Photographic Presentat		
C. Benchmark		
	_	
· · ·	ert of 1600 CSP	
	993.41, 4938736.61	
Elevation 176.	39	



Structure ID	19	
Location	McColl Lane	
UTM Coordinates	372339, 4937417	
Туре	CSP Culvert	
Conversion to CGVD28	+0.33	
r		
A. Specifications		
Top of Road Elevation at Str	ructure 154.93	m
Invert	153.53	m
Number of Openings	2	
Low Point of Road	154.59	m
Governing 1% AEP Event	Spring melt	
Governing 1% AEP Q _{peak}	3.70	m³/s
HW _{peak}	155.17	m
TW _{peak}	155.16	m
$\Delta H_{peak}$	0.01	m
Max. Relief Flow Depth	0.58	m
B. Photographic Presentation	)n	
C. Benchmark		
	III Observe of Conference of the	
	" Obvert of Culvert circle csp	
	25.59, 4937441.71	
Elevation 154.62	2	



Structure ID	21
Location	Bunker Hill Road
UTM Coordinates	371480, 4934711
Туре	CSP Culvert
Conversion to CGVD28	+0.33

A. Specifications

Top of Road Elevation at Structure	151.90	m
Invert	150.20	m
Number of Openings	1	_
Low Point of Road	151.84	m
Governing 1% AEP Event	Spring melt	_
Governing 1% AEP Q _{peak}	0.10	m³/s
HW _{peak}	151.56	m
TW _{peak}	151.56	m
Δ H _{peak}	0.00	m
Max. Relief Flow Depth	0.00	m

B. Photographic Presentation



Description	Obvert of 1200 CSP
Coordinates	371483.02, 4934715.16
Elevation	151.66



Structure ID	22		
Location	Hamilton I	ane	
UTM Coordinates	369758, 493	31596	
Туре	Dam with three s		_
Conversion to CGVD28	+0.33		_
A. Specifications			
Top of Road Elevation at	Structure	151.70	m
Invert		150.18	m
Number of Openings		3	-
Low Point of Road		151.40	m
Governing 1% AEP Event		Spring melt	
Governing 1% AEP Q _{peak}		8.10	m³/s
HW _{peak}		151.50	m
TW _{peak}		150.43	m
$\Delta H_{peak}$		1.07	m
Max. Relief Flow Depth		0.10	
C. Benchmark			
Description Cer	nterline Hamilton Lane		
	9702.38, 4931605.48		
	2.03		



Structure ID	23			
Location	Hichinbrooke R	oad North	-	
UTM Coordinates	367504, 492	29867	_	
Туре	CSP Culv	rert		
Conversion to CGVD28	+0.33		_	
A. Specifications				
Top of Road Elevation at Stru	ucture	148.31	m	
Invert		145.60	 _m	
Number of Openings		1	-	
Low Point of Road		147.76	m	
Governing 1% AEP Event		Spring melt	_	
Governing 1% AEP Q _{peak}		9.30	m³/s	
HW _{peak}		148.16	m	
TW _{peak}		137.42	m	
$\Delta$ H _{peak}		10.74	 m	

0.00

Max. Relief Flow Depth

B. Photographic Presentation

Upstream



Downstream

m



Description	Obvert of Culvert
Coordinates	367505.24, 4929866.03
Elevation	147.16



Structure ID	24
Location	Hichinbrooke Road
UTM Coordinates	367001, 4926814
Туре	CSP Culvert
Conversion to CGVD28	+0.33

A. Specifications

Top of Road Elevation at Structure	138.53	m
Invert	135.44	m
Number of Openings	1	_
Low Point of Road	137.81	m
Governing 1% AEP Event	Spring melt	
Governing 1% AEP Q _{peak}	2.20	m³/s
HW _{peak}	137.40	m
TW _{peak}	137.31	m
Δ H _{peak}	0.09	m
Max. Relief Flow Depth	0.00	m

B. Photographic Presentation (Coming)



Description	Obvert of Culvert
Coordinates	367010.43, 4926832.95
Elevation	138.18



Structure ID	26
Location	Highway 38 near Verona
UTM Coordinates	365713, 4928437
Туре	Bridge
Conversion to CGVD28	+0.33

A. Specifications

Top of Road Elevation at Structure	139.05	m
Invert	135.23	m
Number of Openings	1	_
Low Point of Road	137.86	m
Governing 1% AEP Event	Spring melt	_
Governing 1% AEP Q _{peak}	2.10	m³/s
HW _{peak}	137.42	m
TW _{peak}	137.42	m
Δ H _{peak}	0.00	m
Max. Relief Flow Depth	0.00	m

B. Photographic Presentation



### C. Benchmark

Description Coordinates Elevation CL of Road 365133.29, 4925571.37 139.27



Structure ID	27	
Location K&P	Trail near Verona	-
UTM Coordinates 36	5059, 4925559	-
Туре	Bridge	-
Conversion to CGVD28	+0.33	-
A. Specifications		
Top of Road Elevation at Structure	139.09	m
Invert	134.68	m
Number of Openings	1	
Low Point of Road	138.45	m
Governing 1% AEP Event	Spring melt	
Governing 1% AEP Q _{peak}	33.20	m³/s
HW _{peak}	136.48	m
TW _{peak}	136.48	m
$\Delta$ H _{peak}	0.00	m
Max. Relief Flow Depth	0.00	m
C. Benchmark		
Description Centerline of top of	of bridge	
Coordinates 365060.71, 49255		
Elevation 139.35		



### Appendix K: Computational Mesh Spacing for 2D Flow Areas



FID	Name	Near Spacing	Near Repeats	Far Spacing	1	FID	Name	Near Spacing	Near Repeats	Far Spacing
0	Reach 2 Creek 6	5	2			44	Breakline 28	5	1	
1	Reach 2 Creek 7	5	1			45	St Andrews Lake Ln CL	5	1	20
2	Reach 6 Creek 2	5	2	10		46	K&P Trail Near Cole Lake	5	1	20
3	Reach 6 Creek 4	5	1			47	Private Crossing DS White Lake	5	2	10
4	Reach 6 Creek 6	10	1			48	Breakline 58	3	3	
5	Reach 6 Creek 7	5	1			49	Bvr Dam DS Buck Bay Rd	10	1	10
6	Reach 6 Creek 9	5	2	20		50	Reach 6 Creek 5	10	1	20
7	Reach 6 Creek 10	5	1			51	Bvr Dam US 13 Isl Lk Inlet	5	1	10
8	Reach 9 Creek 1	10	1			52	Reach 6 Creek 11	5	1	10
9	Reach 9 Creek 2	10	1			53	Reach 2 Creek 1	5	2	
10	Reach 1 Creek 1	10	1			54	Reach 6 Creek 1	5	2	10
11	Reach 1 Creek 2	5	2			55	Breakline 86	10	1	
12	Reach 6 Creek 8	5	1	20		56	Reach 2 Creek 8	5	1	10
13	Reach 2 Creek 4	5	2	10		57	Breakline 21	5	1	
14	Cty Rd 38 CL	5	2	20		58	Breakline 42	10	3	
15	Private Crossing US Cole Lake	5	1			59	Breakline 45	10	1	
16	Inflow Channel to Cole Lake	10	2			60	Reach 2 Creek 3	10	1	
17	Reach 2 Creek 2	5	2			61	Reach 3 Crossing 1		0	
18	Cty Rd 38 CL2	5	2	10		62	Breakline 57	3	1	5
19	Westport Rd CL	5	2	10		63	Reach 3 Crossing 2	5	3	20
20	Private Driveawy CL	5	3			64	14 Island Lake Weir	3	1	
21	Craig Rd CL	5	4	10		65	K&P Trail near Godfrey2	2.5	3	10
22	Reach 6 Creek 3	5	1			66	13 Island Lk Dm	5	1	10
23	Private Rd CL Off Dsrt Lk Rd	5	1			67	Breakline 34	3	3	10
24	Bunker Hill Rd CL	5	3	10		68	Breakline 43	5	2	
25	Breakline 4	3	2	10		69	Reach 2 Creek 5	10	2	
26	Weir 10 CL	3	1	10		70	Old Mine Ln	4	3	
27	Breakline 44	5	1			71	Private Crossing 9	4	3	
28	McColl Ln CL	5	2			72	Breakline 72	3	2	
29	Sterling Rd CL	5	1	10		73	Breakline 74	3	2	
30	Breakline 46	1	1			74	Breakline 78	5	3	
31	Breakline 50	5	1			75	Breakline 79	10	4	
32	Breakline 55	5	1	10		76	Breakline 9	2	1	
33	Breakline 54	5	1	10		77	Breakline 6	2	1	
34	Buck Bay Rd CL	6	3	20		78	Breakline 26	2	1	
35	Bunker Hill Rd CL2	5	2	10		79	Breakline 36	2	1	
36	Brooks Ln CL	5	2	10		80	Breakline 39	1	1	
37	Bunker Hill Rd CL3	5	1	20		81	Breakline 13	1	1	
38	S Frontenac Rd 8 CL	5	3	10		82	Breakline 81	1	1	
39	Private Crossing 12 CL	5	1	10		83	Breakline 11	2	1	
40	Private Crossing 11 CL	5	1			84	Breakline 12	2	1	
41	Private Crossing 9 CL	10	1	10		85	Reach 11 Breakline	1	1	
42	Reach 10 Crossing	5	2	20		86	Breakline 2	2	1	
43	Reach 1 Creek 3	2	2							